ESP32-C3 系列芯片 技术规格书ESP32-C3 ESP32-C3FN4 ESP32-C3FH4
ESP32-C3 系列芯片 技术规格书
搭载 RISC-V 32 位单核处理器的极低功耗 SoC
支持 IEEE 802.11b/g/n (2.4 GHz Wi-Fi) 和 Bluetooth 5 (LE)
包括:
ESP32-C3
ESP32-C3FN4
ESP32-C3FH4
ESP32-C3 系列芯片是极低功耗、高集成度的 MCU 系统级芯片 (SoC),集成 2.4 GHz Wi-Fi 和低功耗蓝牙 (Bluetooth® LE) 双模无线通信,具有:
• 完整的 Wi-Fi 子系统,符合 IEEE 802.11b/g/n 协 议,具有 Station 模式、SoftAP 模式、SoftAP + Station 模式和混杂模式(即 Promiscuous mode,是一种特殊模式)
• 低功耗蓝牙子系统,支持 Bluetooth 5 和 Bluetooth mesh
• 行业开创的低功耗性能和射频性能
• RISC-V 32 位单核处理器,四级流水线架构,主 频高达 160 MHz
• 内置 400 KB SRAM(其中 16 KB 专用于 cache)、384 KB ROM 存储空间,并支持多个 外部 SPI、Dual SPI、Quad SPI、QPI flash
• 完善的安全机制 – 硬件加密加速器支持 AES-128/256、Hash、 RSA、HMAC、数字签名和安全启动 – 集成真随机数发生器 – 支持片上存储器、片外存储器和外设的访 问权限管理 – 支持片外存储器加解密功能
• 丰富的通信接口及 GPIO 管脚,可支持多种场景 及复杂的应用
功能框图
图 1: 功能框图
产品特性
Wi-Fi
• 支持 IEEE 802.11 b/g/n 协议 • 在 2.4 GHz 频带支持 20 MHz 和 40 MHz 频宽 • 支持 1T1R 模式,数据速率高达 150 Mbps • 无线多媒体 (WMM) • 帧聚合 (TX/RX A-MPDU, TX/RX A-MSDU) • 立即块确认 (Immediate Block ACK) • 分片和重组 (Fragmentation and defragmentation) • 传输机会 (Transmission opportunity, TXOP) • Beacon 自动监测(硬件 TSF) • 4 × 虚拟 Wi-Fi 接口 • 同时支持基础结构型网络 (Infrastructure BSS) Station 模式、SoftAP 模式、Station + SoftAP 模 式和混杂模式 请注意 ESP32-C3 系列在 Station 模式下扫描 时,SoftAP 信道会同时改变 • 天线分集 • 802.11 mc FTM
蓝牙
• 低功耗蓝牙 (Bluetooth LE):Bluetooth 5、 Bluetooth mesh • 速率支持 125 Kbps、500 Kbps、1 Mbps、2 Mbps • 广播扩展 (Advertising Extensions) • 多广播 (Multiple Advertisement Sets) • 信道选择 (Channel Selection Algorithm #2)
CPU 和存储
• 32 位 RISC-V 单核处理器,主频高达 160 MHz • 384 KB ROM • 400 KB SRAM(其中 16 KB 专用于 cache) • 8 KB RTC SRAM • 嵌入式 flash(不同型号有差异,详见章节 1 产 品型号对比) • SPI、Dual SPI、Quad SPI、QPI 接口外接多个 flash • SHA 加速器 (FIPS PUB 180-4) • RSA 加速器 • 随机数生成器 (RNG)
高级外设接口和传感器
• 22 × GPIO 口 • 数字接口: – 3 × SPI – 2 × UART – 1 × I2C – 1 × I2S – 红外收发器,2 个发送通道和 2 个接收通 道 – LED PWM 控制器,多达 6 个通道 – 全速 USB 串口/JTAG 控制器 – 通用 DMA 控制器 (简称 GDMA),3 个接收 通道和 3 个发送通道 – 1 × TWAI® 控制器(兼容 ISO11898-1) • 模拟接口: – 2 × 12 位 SAR 模/数转换器,多达 6 个通道 – 1 × 温度传感器 • 定时器: – 2 × 54 位通用定时器 – 3 × 看门狗定时器 – 1 × 52 位系统定时器
低功耗管理
• 电源管理单元,四种功耗模式
安全机制
• 安全启动 • Flash 加密 • 4096 位 OTP,用户可用的高达 1792 位 • 加密硬件加速器: – AES-128/256 (FIPS PUB 197) • 访问权限管理• HMAC • 数字签名
应用(部分举例)
具有超低功耗的 ESP32-C3 系列专为物联网 (IoT) 设备而设计,应用领域包括:
• 智能家居 – 智能照明 – 智能按钮 – 智能插座 – 室内定位 • 工业自动化 – 工业机器人 – Mesh 组网 – 人机界面 – 工业总线应用 • 医疗保健 – 健康监测 – 婴儿监控器 • 消费电子产品 – 智能手表、智能手环 – OTT 电视盒、机顶盒设备 – Wi-Fi 和蓝牙音箱 – 具有数据上传功能的玩具和接近感应玩具 • 智慧农业 – 智能温室大棚 – 智能灌溉 – 农业机器人 • 零售餐饮 – POS 系统 – 服务机器人 • 音频设备 – 网络音乐播放器 – 音频流媒体设备 – 网络广播 • 通用低功耗 IoT 传感器集线器 • 通用低功耗 IoT 数据记录器
1. 产品型号对比
1.1 ESP32-C3 系列芯片命名
图 2: ESP32-C3 系列芯片命名
1.2 ESP32-C3 系列芯片对比
表 1: ESP32-C3 系列芯片对比
2.管脚定义
2.1 管脚布局
图 3: ESP32-C3 系列芯片管脚布局(俯视图)
2.2 管脚描述
表 2: 管脚描述
1 PA:模拟电源;PD:RTC IO 电源;I:输入;O:输出;T:可设置为高阻。
2 ESP32-C3FN4 和 ESP32-C3FH4 中的内置 flash 端口与芯片管脚对应关系为: • CS# = SPICS0 • IO0/DI = SPID • IO1/DO = SPIQ • CLK = SPICLK • IO2/WP# = SPIWP • IO3/HOLD# = SPIHD
以上管脚不建议用于其他功能。
3 ESP32-C3 系列芯片和外部 flash 芯片的数据端口连接关系请参考章节 3.4.2 串行外设接口 (SPI)。
4 本表中管脚功能仅指部分固定设置,可通过 GPIO 矩阵输入输出的信号不受本表的限制。请参考 《ESP32-C3 技术参考手册》 的 IO MUX 和 GPIO 交换矩阵 (GPIO, IO_MUX) 章节。
2.3 电源管理
ESP32-C3 系列的数字管脚可分为三种不同的电源域: • VDD3P3_CPU • VDD_SPI • VDD3P3_RTC VDD3P3_CPU 是 CPU 的输入电源。 VDD_SPI 可以作为输入电源或输出电源。 VDD3P3_RTC 同时是 RTC 和 CPU 的输入电源。 ESP32-C3 系列的数字电源管理如图 4 所示:
图 4: ESP32-C3 系列数字电源管理
VDD_SPI 作为输出电源时,由 VDD3P3_CPU 通过电阻 RSP I 后供电(电压典型值为 3.3 V)。在 Deep-sleep 模 式下,为了使 flash 漏电降到低,可以通过软件关闭 VDD_SPI 电源。 关于 CHIP_EN 的说明:
图 5 为 ESP32-C3 系列芯片上电、复位时序图。各参数说明如表 3 所示。
图 5: ESP32-C3 系列芯片上电、复位时序图
表 3: ESP32-C3 系列芯片上电、复位时序图参数说明
2.4 Strapping 管脚
ESP32-C3 系列芯片共有三个 Strapping 管脚。
• GPIO2 • GPIO8 • GPIO9
软件可以读取 GPIO_STRAP_REG 寄存器的 GPIO_STRAPPING 字段,获取 GPIO2、GPIO8 和 GPIO9 的值。寄 存器具体描述请见 《ESP32-C3 技术参考手册》 IO 交换矩阵寄存器列表章节。 在芯片的系统复位过程中,Strapping 管脚对自己管脚上的电平采样并存储到锁存器中,锁存值为“0”或“1”, 并一直保持到芯片掉电或关闭。
系统复位有以下几种:
• 上电复位 • RTC 看门狗复位 • 欠压复位 • 模拟看门狗复位 • 晶振时钟毛刺检测复位
GPIO9 默认连接内部上拉。如果该管脚没有外部连接或者连接的外部线路处于高阻抗状态,则锁存值为 “1”。 为改变 Strapping 的值,您可以应用外部下拉/上拉电阻,或者应用主机 MCU 的 GPIO 控制 ESP32-C3 系列上 电复位时的 Strapping 管脚电平。 复位放开后,Strapping 管脚和普通管脚功能相同。 配置 Strapping 管脚的详细启动模式请参阅表 4 。
表 4: Strapping 管脚
1 GPIO8 = 0 且 GPIO9 = 0 不可使用。
图 6 显示了 CHIP_EN 上电前和上电后 Strapping 管脚的建立时间和保持时间。各参数说明如表 5 所示。
图 6: Strapping 管脚的建立时间和保持时间
表 5: Strapping 管脚的建立时间和保持时间的参数说明
3.功能描述
本章描述 ESP32-C3 系列的各个功能模块。
3.1CPU 和存储
3.1.1CPU
ESP32-C3 系列搭载低功耗 RISC-V 32 位单核处理器,具有以下特性: • 四级流水线架构,支持 160 MHz 的时钟频率 • RV32IMC ISA • 支持 32 位乘法器、32 位除法器 • 支持多 32 个向量中断,共 7 个优先级 • 支持多 8 个硬件断点/观察点 • 支持多 16 个 PMP 区域 • 用于调试的 JTAG 接口
3.1.2片上存储
ESP32-C3 系列片上存储包括: • 384 KB 的 ROM:用于程序启动和内核功能调用 • 400 KB 片上 SRAM:用于数据和指令存储。400 KB 中,有 16 KB 配置为 cache 专用 • RTC 快速存储器:为 8 KB 的 SRAM,可被主 CPU 访问,在 Deep-sleep 模式下可以保存数据 • 4 Kbit 的 eFuse:其中 1792 位保留给用户使用,例如用于存储密钥和设备 ID • 嵌入式 flash:不同型号有差异,详见章节 1 产品型号对比
3.1.3外部 flash
ESP32-C3 系列支持多个外部 SPI、Dual SPI、Quad SPI 和 QPI flash。 CPU 的指令空间、只读数据空间可以映射到外部 flash,外部 flash 可以大支持 16 MB。ESP32-C3 系列支持 基于 XTS-AES 的硬件加解密功能,从而保护开发者 flash 中的程序和数据。 通过高速缓存,ESP32-C3 系列一次多可以同时有: • 8 MB 的指令空间以 64 KB 的块映射到 flash,支持 8 位、16 位和 32 位读取。 • 8 MB 的数据空间以 64 KB 的块映射到 flash,支持 8 位、16 位和 32 位读取。
说明: ESP32-C3 系列芯片启动完成后,软件可以自定义片外 flash 到 CPU 地址空间的映射。
3.1.4存储器映射
ESP32-C3 系列的地址映射结构如图 7 所示。
图 7: 地址映射结构
说明: 图中灰色背景标注的地址空间不可用。
3.1.5Cache
ESP32-C3 系列采用八路组相连只读 cache 结构,具有以下特性: • cache 的大小为 16 KB • cache 的块大小为 32 字节 • 支持 pre-load 功能 • 支持 lock 功能 • 支持关键字优先 (critical word first) 和提前重启 (early restart
3.2系统时钟
3.2.1CPU 时钟
CPU 时钟有三种可能的时钟源:
• 外置主晶振时钟 • 快速 RC 振荡器时钟(通常为 17.5 MHz,频率可调节) • PLL 时钟
应用程序可以在外置主晶振、PLL 时钟和快速 RC 振荡器时钟时钟中选择一个作为时钟源。根据不同的应用程 序,被选择的时钟源直接或在分频之后驱动 CPU 时钟。CPU 一旦发生复位后,CPU 的时钟源默认选择为外置 主晶振时钟,且分频系数为 2。
3.2.2RTC 时钟
RTC 慢速时钟应用于 RTC 计数器、RTC 看门狗和低功耗控制器,有三种可能的时钟源: • 外置低速 (32 kHz) 晶振时钟 • 内置慢速 RC 振荡器(通常为 136 kHz,频率可调节) • 内置快速 RC 振荡器分频时钟(由内置快速 RC 振荡器时钟经 256 分频生成)
RTC 快速时钟应用于 RTC 外设和传感器控制器,有 2 种可能的时钟源: • 外置主晶振二分频时钟 • 内置快速 RC 振荡器时钟(通常为 17.5 MHz,频率可调节)
3.3模拟外设
3.3.1模/数转换器 (ADC) ESP32-C3 系列集成了两个 12 位 SAR ADC,共支持 6 个模拟通道输入。 • ADC1 支持 5 个模拟通道输入,已在工厂校准。 • ADC2 支持 1 个模拟通道输入,未在工厂校准。
有关 ADC 特性,请参考表 14。
3.3.2温度传感器
温度传感器生成一个随温度变化的电压。内部 ADC 将传感器电压转化为一个数字量。 温度传感器的测量范围为–40 °C 到 125 °C。温度传感器一般只适用于监测芯片内部温度的变化,该温度值会随 着微控制器时钟频率或 IO 负载的变化而变化。一般来讲,芯片内部温度会高于环境温度。
3.4数字外设
3.4.1通用输入/输出接口 (GPIO)
ESP32-C3 系列共有 22 个 GPIO 管脚,通过配置对应的寄存器,可以为这些管脚分配不同的功能。除作为数字 信号管脚外,部分 GPIO 管脚也可配置为模拟功能管脚,比如 ADC 等管脚。 所有 GPIO 都可选择内部上拉/下拉,或设置为高阻。GPIO 配置为输入管脚时,可通过读取寄存器获取其输入 值。输入管脚也可经设置产生边缘触发或电平触发的 CPU 中断。数字 IO 管脚都是双向、非反相和三态的,包括带有三态控制的输入和输出缓冲器。这些管脚可以复用作其他功能,例如 UART、SPI 等。当芯片低功耗运行 时,GPIO 可设定为保持状态。 IO MUX 和 GPIO 交换矩阵用于将信号从外设传输至 GPIO 管脚。两者共同组成了芯片的 IO 控制。利用 GPIO 交换矩阵,可配置外设模块的输入信号来源于任何的 IO 管脚,并且外设模块的输出信号也可连接到任意 IO 管 脚。表 6 列出了所有 GPIO 管脚的 IO MUX 功能。更多关于 IO MUX 和 GPIO 交换矩阵的信息,请参考 《ESP32-C3 技术参考手册》 的 IO MUX 和 GPIO 交换矩阵 (GPIO, IO_MUX) 章节。
表 6: IO MUX 管脚功能
复位
每个管脚复位后的默认配置。
• 0 - 输入关闭,高阻(IE = 0) • 1 - 输入使能,高阻(IE = 1) • 2 - 输入使能,下拉电阻使能(IE = 1,WPD = 1) • 3 - 输入使能,上拉电阻使能(IE = 1,WPU = 1) • 4 - 输出使能,上拉电阻使能(OE = 1, WPU = 1) • 0* - 输入关闭,上拉电阻使能(IE = 0,WPU = 0,USB_WPU = 1),具体见说明
• 1* - eFuse 的 EFUSE_DIS_PAD_JTAG 位为
0 时(初始默认值),管脚复位后输入使能,上拉电阻使能(IE = 1,WPU = 1)
1 时,管脚复位后输入使能,高阻(IE = 1)
建议对处于高阻态的管脚配置上拉或下拉,以避免不必要的耗电。用户可参考表 13 对上下拉电阻的描述在 PCB 设计中实现上下拉,或在软件初始化时开启管脚自带的上下拉。
说明
• R - 管脚具有模拟功能。 • USB - GPIO18、GPIO19 为 USB 管脚,USB 管脚的上拉电阻由管脚上拉和 USB 上拉共同控制,当其中 任意一个为 1 时,对应管脚上拉电阻使能。USB 上拉由 USB_SERIAL_JTAG_DP_PULLUP 位控制。 • G - 管脚在芯片上电过程中有毛刺,具体见表 7。
表 7: 芯片上电过程中的管脚毛刺
1 低电平毛刺:在持续期间维持低电平状态; 高电平毛刺:在持续期间维持高电平状态; 上拉毛刺:在持续期间维持上拉状态; 下拉毛刺:在持续期间维持下拉状态。
3.4.2串行外设接口 (SPI)
ESP32-C3 系列共有三个 SPI(SPI0、SPI1 和 SPI2)。SPI0 和 SPI1 只可以配置成 SPI 存储器模式,SPI2 既可 以配置成 SPI 存储器模式又可以配置成通用 SPI 模式。 • SPI 存储器 (SPI Memory) 模式 SPI 存储器模式(SPI0,SPI1 和 SPI2)用于连接 SPI 接口的外部存储器。SPI 存储器模式下数据传输长度 以字节为单位,高支持四线 STR 读写操作。时钟频率可配置,STR 模式下支持的高时钟频率为 120 MHz。 • SPI2 通用 SPI (GP-SPI) 模式 SPI2 作为通用 SPI 时,既可以配置成主机模式,又可以配置成从机模式。主机模式和从机模式均支持双 线全双工和单线、双线或四线半双工通信。通用 SPI 的主机时钟频率可配置;数据传输长度以字节为单 位;时钟极性 (CPOL) 和相位 (CPHA) 可配置;可连接 GDMA 通道。 – 在主机模式下,时钟频率高为 80 MHz,支持 SPI 传输的四种时钟模式。 – 在从机模式下,时钟频率高为 60 MHz,也支持 SPI 传输的四种时钟模式。 通常情况下,ESP32-C3 系列和外部 flash 芯片的数据端口连接关系是:
表 8: ESP32-C3 系列和外部 flash 芯片的连接关系
3.4.3通用异步收发器 (UART)
ESP32-C3 系列有两个 UART 接口,即 UART0 和 UART1,支持异步通信(RS232 和 RS485)和 IrDA,通信速 率可达到 5 Mbps。UART 支持 CTS 和 RTS 信号的硬件流控以及软件流控(XON 和 XOFF)。两个 UART 接口通 过共用的 UHCI0 接口与 GDMA 相连,均可被 GDMA 访问或者 CPU 直接访问。
3.4.4I2C 接口
ESP32-C3 系列有一个 I2C 总线接口,根据用户的配置,总线接口可以用作 I2C 主机或从机模式。I2C 接口支 持: • 标准模式 (100 Kbit/s) • 快速模式 (400 Kbit/s) • 速度高可达 800 Kbit/s,但受制于 SCL 和 SDA 上拉强度 • 7 位寻址模式和 10 位寻址模式 • 双寻址模式 • 7 位广播地址 用户可以配置指令寄存器来控制 I2C 接口,从而实现更多灵活的应用。
3.4.5I2S 接口
ESP32-C3 系列有一个标准 I2S 接口,可以以主机或从机模式,在全双工或半双工模式下工作,并且可被配置 为 I2S 串行 8 位、16 位、24 位、32 位的收发数据模式,支持频率从 10 kHz 到 40 MHz 的 BCK 时钟。 I2S 接口连接 GDMA 控制器。支持 TDM PCM、TDM MSB 对齐、TDM 标准和 PDM TX 接口。 3.4.6 红外遥控器 红外遥控器 (RMT) 支持双通道的红外发射和双通道的红外接收。通过程序控制脉冲波形,遥控器可以支持多种 红外协议和单线协议。四个通道共用一个 192 × 32 位的存储模块来存放收发的波形。
3.4.6LED PWM 控制器
LED PWM 控制器可以用于生成六路独立的数字波形,具有如下特性: • 波形的周期和占空比可配置,占空比精确度可达 18 位 • 多种时钟源选择,包括 APB 总线时钟、外置主晶振时钟 • 可在 Light-sleep 模式下工作 • 支持硬件自动步进式地增加或减少占空比,可用于 LED RGB 彩色梯度发生器
3.4.8 通用 DMA 控制器
ESP32-C3 系列包含一个六通道的通用 DMA 控制器(简称 GDMA),包括三个发送通道和三个接收通道,每个 通道之间相互独立。这六个通道被具有 DMA 功能的外设所共享,通道之间支持可配置固定优先级。 通用 DMA 控制器基于链表来实现对数据收发的控制,并支持外设与存储器之间及存储器与存储器之间的高速 数据传输。每个通道支持访问片内 RAM。 ESP32-C3 系列中有六个外设具有 DMA 功能,这六个外设是 SPI2、UHCI0、I2S、AES、SHA 和 ADC。
3.4.9 USB 串口/JTAG 控制器
ESP32-C3 集成一个 USB 串口/JTAG 控制器,具有以下特性: • 兼容 USB 2.0 全速标准,传输速度高可达 12 Mbit/s(注意,该控制器不支持 480 Mbit/s 的高速传输模 式) • 包含 CDC-ACM 虚拟串口及 JTAG 适配器功能 • 可编程嵌入式/外部 flash • 利用紧凑的 JTAG 指令,支持 CPU 调试 • 芯片内部集成的全速 USB PHY
3.4.10 TWAI® 控制器
ESP32-C3 系列带有一个 TWAI® 控制器,具有如下特性: • 兼容 ISO 11898-1 协议 • 支持标准帧格式(11 位 ID)和扩展帧格式(29 位 ID) • 比特率从 1 Kbit/s 到 1 Mbit/s • 多种操作模式:工作模式、只听模式和自检模式(传输无需确认) • 64 字节接收 FIFO • 数据接收过滤器(支持单过滤器和双过滤器模式) • 错误检测与处理:错误计数器、可配置的错误中断阈值、错误代码记录和仲裁丢失记录
3.5 射频和 Wi-Fi
ESP32-C3 系列射频包含以下主要模块: • 2.4 GHz 接收器 • 2.4 GHz 发射器 • 偏置 (Bias) 和线性稳压器 • Balun 和收发切换器 • 时钟生成器
3.5.1 2.4 GHz 接收器
2.4 GHz 接收器将 2.4 GHz 射频信号解调为正交基带信号,并用两个高精度、高速的 ADC 将后者转为数字信 号。为了适应不同的信道情况,ESP32-C3 系列集成了 RF 滤波器、自动增益控制 (AGC)、DC 偏移补偿电路和 基带滤波器。
3.5.2 2.4 GHz 发射器 2.4 GHz 发射器将正交基带信号调制为 2.4 GHz 射频信号,使用大功率互补金属氧化物半导体 (CMOS) 功率放 大器驱动天线。数字校准进一步改善了功率放大器的线性。 为了抵消射频接收器的瑕疵,ESP32-C3 系列还另增了校准措施,例如: • 载波泄露消除 • I/Q 相位匹配 • 基带非线性抑制 • 射频非线性抑制 • 天线匹配 这些内置校准措施缩短了产品的测试时间,并且不再需要测试设备。 3.5.3 时钟生成器 时钟生成器为接收器和发射器生成 2.4 GHz 正交时钟信号,所有部件均集成于芯片上,包括电感、变容二极管、 环路滤波器、线性稳压器和分频器。 时钟生成器带有内置校准电路和自测电路。运用自主知识产权的优化算法,对正交时钟的相位和相位噪声进行 优化处理,使接收器和发射器都有好的性能表现。 3.5.4 Wi-Fi 射频和基带 ESP32-C3 系列 Wi-Fi 射频和基带支持以下特性: • 802.11b/g/n • 802.11n MCS0-7 支持 20 MHz 和 40 MHz 带宽 • 802.11n MCS32 • 802.11n 0.4 µs 保护间隔 • 数据率高达 150 Mbps • 接收 STBC(单空间流) • 可调节的发射功率 • 天线分集 ESP32-C3 系列支持基于外部射频开关的天线分集与选择。外部射频开关由一个或多个 GPIO 管脚控制, 用来选择合适的天线以减少信道衰落的影响。 3.5.5 Wi-Fi MAC ESP32-C3 系列完全遵循 802.11 b/g/n Wi-Fi MAC 协议栈,支持分布式控制功能 (DCF) 下的基本服务集 (BSS) STA 和 SoftAP 操作。支持通过小化主机交互来优化有效工作时长,以实现功耗管理。 ESP32-C3 系列 Wi-Fi MAC 自行支持的底层协议功能如下: • 4 × 虚拟 Wi-Fi 接口 • 同时支持基础结构型网络 (Infrastructure BSS) Station 模式、SoftAP 模式、Station + SoftAP 模式和混杂模 式 • RTS 保护,CTS 保护,立即块确认 (Immediate Block ACK) • 分片和重组 (Fragmentation and defragmentation)• TX/RX A-MPDU,TX/RX A-MSDU • 传输机会 (TXOP) • 无线多媒体 (WMM) • GCMP、CCMP、TKIP、WAPI、WEP、BIP、WPA2 个人模式或 WPA2 企业模式 (WPA2-PSK/WPA2-Enterprise) 及 WPA3 个人模式或 WPA3 企业模式 (WPA3-PSK/WPA3-Enterprise) • 自动 Beacon 监测(硬件 TSF) • 802.11mc FTM 3.5.6 联网特性 乐鑫提供的固件支持 TCP/IP 联网、ESP-WIFI-MESH 联网或其他 Wi-Fi 联网协议,同时也支持 TLS 1.0、1.1、 1.2。 3.6 低功耗蓝牙 ESP32-C3 系列包含了一个低功耗蓝牙 (Bluetooth Low Energy) 子系统,集成了硬件链路层控制器、射频/调制 解调器模块和功能齐全的软件协议栈。低功耗蓝牙子系统支持 Bluetooth 5 和 Bluetooth mesh。 3.6.1 低功耗蓝牙射频和物理层 ESP32-C3 系列低功耗蓝牙射频和物理层支持以下特性: • 1 Mbps PHY • 2 Mbps PHY,用于提升传输速率 • Coded PHY (125 Kbps and 500 Kbps),用于提升传输距离 • 硬件实现 Listen Before Talk (LBT) • 天线分集 (Antenna diversity):支持带有外部射频开关的天线分集与选择 外部射频开关由一个或多个 GPIO 管脚控制,用来选择合适的天线以减少信道衰减的影响。 3.6.2 低功耗蓝牙链路层控制器 ESP32-C3 系列低功耗蓝牙链路控制器支持以下特性: • 广播扩展 (Advertising Extensions),用于增强广播能力,可以广播更多的智能数据 • 多广播 • 支持同时广播和扫描 • 多连接,支持中心设备 (Central) 和外围设备 (Peripheral) 同时运行 • 自适应跳频和信道选择 • 信道选择算法 #2 (Channel Selection Algorithm #2) • 连接参数更新 • 高速不可连接广播 (High Duty Cycle Non-Connectable Advertising) • LE Privacy 1.2 • 数据包长度扩展 (LE Data Packet Length Extension) • 链路层扩展扫描过滤策略 (Link Layer Extended Scanner Filter policies)• 低速可连接定向广播 (Low duty cycle directed advertising) • 链路层加密 • LE Ping
3.7 低功耗管理 ESP32-C3 系列采用了先进的电源管理技术,可以在不同的功耗模式之间切换。ESP32-C3 系列支持的功耗模 式有: • Active 模式:CPU 和芯片射频处于工作状态。芯片可以接收、发射和侦听信号。 • Modem-sleep 模式:CPU 可运行,时钟频率可配置。Wi-Fi 及 Bluetooth LE 的基带和射频关闭,但 Wi-Fi 或 Bluetooth LE 可保持连接。 • Light-sleep 模式:CPU 暂停运行。任何唤醒事件(MAC、主机、RTC 定时器或外部中断)都会唤醒芯片。 Wi-Fi 或 Bluetooth LE 可保持连接。 • Deep-sleep 模式:CPU 和大部分外设都会掉电,只有 RTC 存储器处于工作状态。Wi-Fi 连接数据存储在 RTC 中。 设备在不同的功耗模式下有不同的电流消耗,详情请见表 16。 3.8 定时器 3.8.1 通用定时器 ESP32-C3 系列内置两个 54 位通用定时器,具有 16 位分频器和 54 位可自动重载的向上/向下计时器。 定时器具有如下功能: • 16 位时钟预分频器,分频系数为 1-65536 • 54 位时基计数器可配置成递增或递减 • 可读取时基计数器的实时值 • 暂停和恢复时基计数器 • 可配置的报警产生机制 • 电平触发中断 3.8.2 系统定时器 ESP32-C3 系列内置 52 位系统定时器,该系统定时器包含两个 52 位的时钟计数器和三个报警比较器,具有以 下功能: • 时钟计数器的频率固定为 16 MHz • 三个报警比较器根据不同的报警值可产生三个独立的中断 • 两种报警模式:单次特定报警值报警和周期性报警 • 支持设置 52 位的单次特定报警值和 26 位的周期性报警值 • 计数器值重新加载 • 支持当 CPU 暂停或处于 OCD 模式时,时钟计数器也暂停
3.8.3 看门狗定时器 ESP32-C3 系列中有三个看门狗定时器:两个定时器组中各一个(称作主系统看门狗定时器,缩写为 MWDT), RTC 模块中一个(称作 RTC 看门狗定时器,缩写为 RWDT)。 在引导加载 flash 固件期间,RWDT 和定时器组 0 中的 MWDT 会自动使能,以检测引导过程中发生的错误,并 恢复运行。 看门狗定时器具有如下特性: • 四个阶段,每个阶段都可配置超时时间。每阶段都可单独配置、使能和关闭。 • 如在某个阶段发生超时,MWDT 会采取中断、CPU 复位和内核复位三种超时动作中的一种,RWDT 会采 取中断、CPU 复位、内核复位和系统复位四种超时动作中的一种。 • 保护 32 位超时计数器 • 防止 RWDT 和 MWDT 的配置被误改。 • flash 启动保护 如果在预定时间内 SPI flash 的引导过程没有完成,看门狗会重启整个主系统。3.9 加密硬件加速器 ESP32-C3 系列配备硬件加速器,支持一些通用加密算法,比如 AES-128/AES-256 (FIPS PUB 197)、 ECB/CBC/OFB/CFB/CTR (NIST SP 800-38A)、SHA1/SHA224/SHA256 (FIPS PUB 180-4)、RSA3072 和 ECC 等,还支持大数乘法、大数模乘等独立运算,其中 RSA 和大数模乘运算大长度可达 3072 位,大数乘法的因 子大长度可达 1536 位。 3.10 物理安全特性 • 外部 flash 通过 AES-XTS 算法进行加密,加密算法使用的密钥无法被软件读写,因此用户的应用程序代码 与数据不会被非法获取。 • 安全启动功能确保只启动已签名(具有 RSA-PSS 签名)的固件,此功能的可信度是根植于硬件逻辑。 • HMAC 模块可以使用软件无法访问的安全密钥来生成用于身份验证或其他用途的 MAC 签名。 • 数字签名模块可以使用软件无法访问的 RSA 密钥生成用于身份验证的 RSA 签名。 • 世界控制器模块提供两个软件运行环境,可将所有硬件和软件资源划分成两种,分别放置到安全区域及普 通区域,保证普通区域硬件无法访问安全区域,从而在这两个区域之间构建安全边界。
3.11 外设管脚分配 表 9: 外设和传感器管脚分配
4.电气特性 4.1 大额定值 超出大额定值可能导致器件损坏。这只是强调的额定值,不涉及器件的功能性操作。
表 10: 大额定值
4.2 建议工作条件 表 11: 建议工作条件
1 更多信息请参考章节 2.3 电源管理。 2 在使用 VDD_SPI 为外设供电的使用场景中,VDD3P3_CPU 还应满足外设的使用要求,详见表 12。 3 使用单电源供电时,输出电流需要达到 500 mA 及以上。
4.3 VDD_SPI 输出特性 表 12: VDD_SPI 输出特性
在实际使用情况下,当 VDD_SPI 为 3.3 V 输出模式的时候,VDD3P3_CPU 需要考虑到 RSP I 的影响。比如在接 3.3 V flash 的情况下需满足以下条件: VDD3P3_CPU > VDD_flash_min + I_flash_max*RSP I 其中,VDD_flash_min 为 flash 的低工作电压,I_flash_max 为 flash 的大工作电流。 更多信息请参考章节 2.3 电源管理。
4.4 直流电气特性 (3.3 V, 25 °C)
表 13: 直流电气特性 (3.3 V, 25 °C)
1 VDD 是 I/O 的供电电源。 2 VOH 和 VOL 为负载是高阻条件下的测试值。
4.5 ADC 特性 表 14: ADC 特性
1 使用滤波器多次采样或计算平均值可以获得更好的 DNL 结果。
4.6 功耗特性 下列功耗数据是基于 3.3 V 电源、25 °C 环境温度,在 RF 接口处完成的测试结果。所有发射数据均基于 100% 的占空比测得。
表 15: RF 功耗
表 16: 不同功耗模式下的功耗
1 测量 Modem-sleep 模式功耗数据时,CPU 处于工作状态,cache 处于空闲状态。 2 在 Wi-Fi 开启的场景中,芯片会在 Active 和 Modem-sleep 模式之间切换,功耗也会在两种模式间 变化。 3 Modem-sleep 模式下,CPU 频率自动变化,频率取决于 CPU 负载和使用的外设。
4.7 可靠性认证 表 17: 可靠性认证
1 JEDEC 文档 JEP155 规定:500 V HBM 能够在标准 ESD 控制流程下安全生产。 2 JEDEC 文档 JEP157 规定:250 V CDM 能够在标准 ESD 控制流程下安全生产。
4.8 Wi-Fi 射频
表 18: Wi-Fi 频率
4.8.1 Wi-Fi 射频发射器 (TX) 规格
表 19: 频谱模板和 EVM 符合 802.11 标准时的发射功率
表 20: 发射 EVM 测试
4.8.2 Wi-Fi 射频接收器 (RX) 规格
表 21: 接收灵敏度
表 22: 大接收电平
表 23: 接收邻道抑制
4.9 低功耗蓝牙射频
表 24: 低功耗蓝牙频率
4.9.1 低功耗蓝牙射频发射器 (TX) 规格
表 25: 发射器特性 - 低功耗蓝牙 1 Mbps
表 26: 发射器特性 - 低功耗蓝牙 2 Mbps
表 27: 发射器特性 - 低功耗蓝牙 125 Kbps
表 28: 发射器特性 - 低功耗蓝牙 500 Kbps
4.9.2 低功耗蓝牙射频接收器 (RX) 规格 表 29: 接收器特性 - 低功耗蓝牙 1 Mbps
表 30: 接收器特性 - 低功耗蓝牙 2 Mbps
表 31: 接收器特性 - 低功耗蓝牙 125 Kbps
表 32: 接收器特性 - 低功耗蓝牙 500 Kbps
5. 封装信息
图 8: QFN32 (5×5 mm) 封装
说明: • 推荐 PCB 封装图源文件 (dxf) 可使用 Autodesk Viewer 查看; • 有关卷带、载盘和产品标签的信息,请参阅 《乐鑫芯片包装信息》。
地址:深圳市宝安区西乡街道麻布社区宝安互联网产业基地A区6栋7栋7706
版权所有©2020 深圳市飞睿科技有限公司 粤ICP备2020098907号 飞睿科技微波雷达wifi模块网站地图
免责声明:本网站部分图片和文字内容可能来源于网络,转载目的在于传递更多信息,并不代表本网站赞同其观点或证实其内容的真实性。如涉及作品内容、版权和其它问题,请在30日内与本网站联系,我们将在第一时间删除内容!本站拥有对此声明的最终解释权。