这是描述信息
1、ESP32-C3 系列芯片功能图框

ESP32-C3 系列芯片 技术规格书ESP32-C3 ESP32-C3FN4 ESP32-C3FH4

ESP32-C3 系列芯片 技术规格书 搭载 RISC-V 32 位单核处理器的极低功耗 SoC  支持 IEEE 802.11b/g/n (2.4 GHz Wi-Fi) 和 Bluetooth 5 (LE) 包括:  ESP32-C3  ESP32-C3FN4  ESP32-C3FH4 ESP32-C3 系列芯片是极低功耗、高集成度的 MCU 系统级芯片 (SoC),集成 2.4 GHz Wi-Fi 和低功耗蓝牙 (Bluetooth® LE) 双模无线通信,具有: • 完整的 Wi-Fi 子系统,符合 IEEE 802.11b/g/n 协 议,具有 Station 模式、SoftAP 模式、SoftAP + Station 模式和混杂模式(即 Promiscuous mode,是一种特殊模式)  • 低功耗蓝牙子系统,支持 Bluetooth 5 和 Bluetooth mesh  • 行业开创的低功耗性能和射频性能  • RISC-V 32 位单核处理器,四级流水线架构,主 频高达 160 MHz  • 内置 400 KB SRAM(其中 16 KB 专用于 cache)、384 KB ROM 存储空间,并支持多个 外部 SPI、Dual SPI、Quad SPI、QPI flash  • 完善的安全机制 – 硬件加密加速器支持 AES-128/256、Hash、 RSA、HMAC、数字签名和安全启动 – 集成真随机数发生器 – 支持片上存储器、片外存储器和外设的访 问权限管理 – 支持片外存储器加解密功能  • 丰富的通信接口及 GPIO 管脚,可支持多种场景 及复杂的应用 功能框图 图 1: 功能框图 产品特性 Wi-Fi  • 支持 IEEE 802.11 b/g/n 协议 • 在 2.4 GHz 频带支持 20 MHz 和 40 MHz 频宽 • 支持 1T1R 模式,数据速率高达 150 Mbps • 无线多媒体 (WMM) • 帧聚合 (TX/RX A-MPDU, TX/RX A-MSDU) • 立即块确认 (Immediate Block ACK) • 分片和重组 (Fragmentation and defragmentation) • 传输机会 (Transmission opportunity, TXOP) • Beacon 自动监测(硬件 TSF) • 4 × 虚拟 Wi-Fi 接口 • 同时支持基础结构型网络 (Infrastructure BSS) Station 模式、SoftAP 模式、Station + SoftAP 模 式和混杂模式 请注意 ESP32-C3 系列在 Station 模式下扫描 时,SoftAP 信道会同时改变 • 天线分集 • 802.11 mc FTM  蓝牙  • 低功耗蓝牙 (Bluetooth LE):Bluetooth 5、 Bluetooth mesh • 速率支持 125 Kbps、500 Kbps、1 Mbps、2 Mbps • 广播扩展 (Advertising Extensions) • 多广播 (Multiple Advertisement Sets) • 信道选择 (Channel Selection Algorithm #2)  CPU 和存储  • 32 位 RISC-V 单核处理器,主频高达 160 MHz • 384 KB ROM • 400 KB SRAM(其中 16 KB 专用于 cache) • 8 KB RTC SRAM • 嵌入式 flash(不同型号有差异,详见章节 1 产 品型号对比) • SPI、Dual SPI、Quad SPI、QPI 接口外接多个 flash • SHA 加速器 (FIPS PUB 180-4) • RSA 加速器 • 随机数生成器 (RNG) 高级外设接口和传感器  • 22 × GPIO 口 • 数字接口: – 3 × SPI – 2 × UART – 1 × I2C – 1 × I2S – 红外收发器,2 个发送通道和 2 个接收通 道 – LED PWM 控制器,多达 6 个通道 – 全速 USB 串口/JTAG 控制器 – 通用 DMA 控制器 (简称 GDMA),3 个接收 通道和 3 个发送通道 – 1 × TWAI® 控制器(兼容 ISO11898-1) • 模拟接口: – 2 × 12 位 SAR 模/数转换器,多达 6 个通道 – 1 × 温度传感器 • 定时器: – 2 × 54 位通用定时器 – 3 × 看门狗定时器 – 1 × 52 位系统定时器  低功耗管理  • 电源管理单元,四种功耗模式  安全机制  • 安全启动 • Flash 加密 • 4096 位 OTP,用户可用的高达 1792 位 • 加密硬件加速器: – AES-128/256 (FIPS PUB 197) • 访问权限管理• HMAC • 数字签名 应用(部分举例)  具有超低功耗的 ESP32-C3 系列专为物联网 (IoT) 设备而设计,应用领域包括:  • 智能家居 – 智能照明 – 智能按钮 – 智能插座 – 室内定位 • 工业自动化 – 工业机器人 – Mesh 组网 – 人机界面 – 工业总线应用 • 医疗保健 – 健康监测 – 婴儿监控器 • 消费电子产品 – 智能手表、智能手环 – OTT 电视盒、机顶盒设备 – Wi-Fi 和蓝牙音箱 – 具有数据上传功能的玩具和接近感应玩具 • 智慧农业 – 智能温室大棚 – 智能灌溉 – 农业机器人 • 零售餐饮 – POS 系统 – 服务机器人 • 音频设备 – 网络音乐播放器 – 音频流媒体设备 – 网络广播 • 通用低功耗 IoT 传感器集线器 • 通用低功耗 IoT 数据记录器 1. 产品型号对比 1.1 ESP32-C3 系列芯片命名 图 2: ESP32-C3 系列芯片命名 1.2 ESP32-C3 系列芯片对比  表 1: ESP32-C3 系列芯片对比 2.管脚定义  2.1 管脚布局 图 3: ESP32-C3 系列芯片管脚布局(俯视图) 2.2 管脚描述  表 2: 管脚描述 1 PA:模拟电源;PD:RTC IO 电源;I:输入;O:输出;T:可设置为高阻。  2 ESP32-C3FN4 和 ESP32-C3FH4 中的内置 flash 端口与芯片管脚对应关系为: • CS# = SPICS0 • IO0/DI = SPID • IO1/DO = SPIQ • CLK = SPICLK • IO2/WP# = SPIWP • IO3/HOLD# = SPIHD  以上管脚不建议用于其他功能。  3 ESP32-C3 系列芯片和外部 flash 芯片的数据端口连接关系请参考章节 3.4.2 串行外设接口 (SPI)。  4 本表中管脚功能仅指部分固定设置,可通过 GPIO 矩阵输入输出的信号不受本表的限制。请参考 《ESP32-C3 技术参考手册》 的 IO MUX 和 GPIO 交换矩阵 (GPIO, IO_MUX) 章节。 2.3 电源管理  ESP32-C3 系列的数字管脚可分为三种不同的电源域: • VDD3P3_CPU • VDD_SPI • VDD3P3_RTC VDD3P3_CPU 是 CPU 的输入电源。 VDD_SPI 可以作为输入电源或输出电源。 VDD3P3_RTC 同时是 RTC 和 CPU 的输入电源。 ESP32-C3 系列的数字电源管理如图 4 所示: 图 4: ESP32-C3 系列数字电源管理 VDD_SPI 作为输出电源时,由 VDD3P3_CPU 通过电阻 RSP I 后供电(电压典型值为 3.3 V)。在 Deep-sleep 模 式下,为了使 flash 漏电降到低,可以通过软件关闭 VDD_SPI 电源。 关于 CHIP_EN 的说明:  图 5 为 ESP32-C3 系列芯片上电、复位时序图。各参数说明如表 3 所示。 图 5: ESP32-C3 系列芯片上电、复位时序图 表 3: ESP32-C3 系列芯片上电、复位时序图参数说明 2.4 Strapping 管脚  ESP32-C3 系列芯片共有三个 Strapping 管脚。  • GPIO2 • GPIO8 • GPIO9  软件可以读取 GPIO_STRAP_REG 寄存器的 GPIO_STRAPPING 字段,获取 GPIO2、GPIO8 和 GPIO9 的值。寄 存器具体描述请见 《ESP32-C3 技术参考手册》 IO 交换矩阵寄存器列表章节。 在芯片的系统复位过程中,Strapping 管脚对自己管脚上的电平采样并存储到锁存器中,锁存值为“0”或“1”, 并一直保持到芯片掉电或关闭。  系统复位有以下几种:  • 上电复位 • RTC 看门狗复位 • 欠压复位 • 模拟看门狗复位 • 晶振时钟毛刺检测复位  GPIO9 默认连接内部上拉。如果该管脚没有外部连接或者连接的外部线路处于高阻抗状态,则锁存值为 “1”。 为改变 Strapping 的值,您可以应用外部下拉/上拉电阻,或者应用主机 MCU 的 GPIO 控制 ESP32-C3 系列上 电复位时的 Strapping 管脚电平。 复位放开后,Strapping 管脚和普通管脚功能相同。 配置 Strapping 管脚的详细启动模式请参阅表 4 。  表 4: Strapping 管脚 1 GPIO8 = 0 且 GPIO9 = 0 不可使用。 图 6 显示了 CHIP_EN 上电前和上电后 Strapping 管脚的建立时间和保持时间。各参数说明如表 5 所示。 图 6: Strapping 管脚的建立时间和保持时间 表 5: Strapping 管脚的建立时间和保持时间的参数说明 3.功能描述  本章描述 ESP32-C3 系列的各个功能模块。  3.1CPU 和存储  3.1.1CPU  ESP32-C3 系列搭载低功耗 RISC-V 32 位单核处理器,具有以下特性: • 四级流水线架构,支持 160 MHz 的时钟频率 • RV32IMC ISA • 支持 32 位乘法器、32 位除法器 • 支持多 32 个向量中断,共 7 个优先级 • 支持多 8 个硬件断点/观察点 • 支持多 16 个 PMP 区域 • 用于调试的 JTAG 接口  3.1.2片上存储  ESP32-C3 系列片上存储包括: • 384 KB 的 ROM:用于程序启动和内核功能调用 • 400 KB 片上 SRAM:用于数据和指令存储。400 KB 中,有 16 KB 配置为 cache 专用 • RTC 快速存储器:为 8 KB 的 SRAM,可被主 CPU 访问,在 Deep-sleep 模式下可以保存数据 • 4 Kbit 的 eFuse:其中 1792 位保留给用户使用,例如用于存储密钥和设备 ID • 嵌入式 flash:不同型号有差异,详见章节 1 产品型号对比  3.1.3外部 flash  ESP32-C3 系列支持多个外部 SPI、Dual SPI、Quad SPI 和 QPI flash。 CPU 的指令空间、只读数据空间可以映射到外部 flash,外部 flash 可以大支持 16 MB。ESP32-C3 系列支持 基于 XTS-AES 的硬件加解密功能,从而保护开发者 flash 中的程序和数据。 通过高速缓存,ESP32-C3 系列一次多可以同时有: • 8 MB 的指令空间以 64 KB 的块映射到 flash,支持 8 位、16 位和 32 位读取。 • 8 MB 的数据空间以 64 KB 的块映射到 flash,支持 8 位、16 位和 32 位读取。 说明: ESP32-C3 系列芯片启动完成后,软件可以自定义片外 flash 到 CPU 地址空
1、ESP32-C3 系列芯片功能图框
产品描述

ESP32-C3 系列芯片 技术规格书

搭载 RISC-V 32 位单核处理器的极低功耗 SoC 
支持 IEEE 802.11b/g/n (2.4 GHz Wi-Fi) 和 Bluetooth 5 (LE)

包括: 
ESP32-C3 
ESP32-C3FN4 
ESP32-C3FH4

ESP32-C3 系列芯片是极低功耗、高集成度的 MCU 系统级芯片 (SoC),集成 2.4 GHz Wi-Fi 和低功耗蓝牙 (Bluetooth® LE) 双模无线通信,具有:

• 完整的 Wi-Fi 子系统,符合 IEEE 802.11b/g/n 协 议,具有 Station 模式、SoftAP 模式、SoftAP + Station 模式和混杂模式(即 Promiscuous mode,是一种特殊模式) 
• 低功耗蓝牙子系统,支持 Bluetooth 5 和 Bluetooth mesh 
• 行业开创的低功耗性能和射频性能 
• RISC-V 32 位单核处理器,四级流水线架构,主 频高达 160 MHz 
• 内置 400 KB SRAM(其中 16 KB 专用于 cache)、384 KB ROM 存储空间,并支持多个 外部 SPI、Dual SPI、Quad SPI、QPI flash 
• 完善的安全机制 – 硬件加密加速器支持 AES-128/256、Hash、 RSA、HMAC、数字签名和安全启动 – 集成真随机数发生器 – 支持片上存储器、片外存储器和外设的访 问权限管理 – 支持片外存储器加解密功能 
• 丰富的通信接口及 GPIO 管脚,可支持多种场景 及复杂的应用

功能框图

ESP32-C3 系列芯片功能图框图 1: 功能框图

产品特性

Wi-Fi 
• 支持 IEEE 802.11 b/g/n 协议 • 在 2.4 GHz 频带支持 20 MHz 和 40 MHz 频宽 • 支持 1T1R 模式,数据速率高达 150 Mbps • 无线多媒体 (WMM) • 帧聚合 (TX/RX A-MPDU, TX/RX A-MSDU) • 立即块确认 (Immediate Block ACK) • 分片和重组 (Fragmentation and defragmentation) • 传输机会 (Transmission opportunity, TXOP) • Beacon 自动监测(硬件 TSF) • 4 × 虚拟 Wi-Fi 接口 • 同时支持基础结构型网络 (Infrastructure BSS) Station 模式、SoftAP 模式、Station + SoftAP 模 式和混杂模式 请注意 ESP32-C3 系列在 Station 模式下扫描 时,SoftAP 信道会同时改变 • 天线分集 • 802.11 mc FTM 
蓝牙 
• 低功耗蓝牙 (Bluetooth LE):Bluetooth 5、 Bluetooth mesh • 速率支持 125 Kbps、500 Kbps、1 Mbps、2 Mbps • 广播扩展 (Advertising Extensions) • 多广播 (Multiple Advertisement Sets) • 信道选择 (Channel Selection Algorithm #2) 
CPU 和存储 
• 32 位 RISC-V 单核处理器,主频高达 160 MHz • 384 KB ROM • 400 KB SRAM(其中 16 KB 专用于 cache) • 8 KB RTC SRAM • 嵌入式 flash(不同型号有差异,详见章节 1 产 品型号对比) • SPI、Dual SPI、Quad SPI、QPI 接口外接多个 flash • SHA 加速器 (FIPS PUB 180-4) • RSA 加速器 • 随机数生成器 (RNG)
高级外设接口和传感器 
• 22 × GPIO 口 • 数字接口: – 3 × SPI – 2 × UART – 1 × I2C – 1 × I2S – 红外收发器,2 个发送通道和 2 个接收通 道 – LED PWM 控制器,多达 6 个通道 – 全速 USB 串口/JTAG 控制器 – 通用 DMA 控制器 (简称 GDMA),3 个接收 通道和 3 个发送通道 – 1 × TWAI® 控制器(兼容 ISO11898-1) • 模拟接口: – 2 × 12 位 SAR 模/数转换器,多达 6 个通道 – 1 × 温度传感器 • 定时器: – 2 × 54 位通用定时器 – 3 × 看门狗定时器 – 1 × 52 位系统定时器 
低功耗管理 
• 电源管理单元,四种功耗模式 
安全机制 
• 安全启动 • Flash 加密 • 4096 位 OTP,用户可用的高达 1792 位 • 加密硬件加速器: – AES-128/256 (FIPS PUB 197) • 访问权限管理• HMAC • 数字签名

应用(部分举例) 
具有超低功耗的 ESP32-C3 系列专为物联网 (IoT) 设备而设计,应用领域包括:
 • 智能家居 – 智能照明 – 智能按钮 – 智能插座 – 室内定位 • 工业自动化 – 工业机器人 – Mesh 组网 – 人机界面 – 工业总线应用 • 医疗保健 – 健康监测 – 婴儿监控器 • 消费电子产品 – 智能手表、智能手环 – OTT 电视盒、机顶盒设备 – Wi-Fi 和蓝牙音箱 – 具有数据上传功能的玩具和接近感应玩具 • 智慧农业 – 智能温室大棚 – 智能灌溉 – 农业机器人 • 零售餐饮 – POS 系统 – 服务机器人 • 音频设备 – 网络音乐播放器 – 音频流媒体设备 – 网络广播 • 通用低功耗 IoT 传感器集线器 • 通用低功耗 IoT 数据记录器

1. 产品型号对比

1.1 ESP32-C3 系列芯片命名

ESP32-C3 系列芯片命名图 2: ESP32-C3 系列芯片命名

1.2 ESP32-C3 系列芯片对比 

ESP32-C3 系列芯片对比

表 1: ESP32-C3 系列芯片对比

2.管脚定义 

2.1 管脚布局

ESP32-C3 系列芯片管脚布局图 3: ESP32-C3 系列芯片管脚布局(俯视图)

2.2 管脚描述 

表 2: 管脚描述

ESP32-C3 系列芯片管脚描述

ESP32-C3 系列芯片管脚描述1 PA:模拟电源;PD:RTC IO 电源;I:输入;O:输出;T:可设置为高阻。 
2 ESP32-C3FN4 和 ESP32-C3FH4 中的内置 flash 端口与芯片管脚对应关系为: • CS# = SPICS0 • IO0/DI = SPID • IO1/DO = SPIQ • CLK = SPICLK • IO2/WP# = SPIWP • IO3/HOLD# = SPIHD 
以上管脚不建议用于其他功能。 
3 ESP32-C3 系列芯片和外部 flash 芯片的数据端口连接关系请参考章节 3.4.2 串行外设接口 (SPI)。 
4 本表中管脚功能仅指部分固定设置,可通过 GPIO 矩阵输入输出的信号不受本表的限制。请参考 《ESP32-C3 技术参考手册》 的 IO MUX 和 GPIO 交换矩阵 (GPIO, IO_MUX) 章节。

2.3 电源管理 
ESP32-C3 系列的数字管脚可分为三种不同的电源域: • VDD3P3_CPU • VDD_SPI • VDD3P3_RTC VDD3P3_CPU 是 CPU 的输入电源。 VDD_SPI 可以作为输入电源或输出电源。 VDD3P3_RTC 同时是 RTC 和 CPU 的输入电源。 ESP32-C3 系列的数字电源管理如图 4 所示:

ESP32-C3 系列芯片数字电源管理
图 4: ESP32-C3 系列数字电源管理

VDD_SPI 作为输出电源时,由 VDD3P3_CPU 通过电阻 RSP I 后供电(电压典型值为 3.3 V)。在 Deep-sleep 模 式下,为了使 flash 漏电降到低,可以通过软件关闭 VDD_SPI 电源。 关于 CHIP_EN 的说明: 
图 5 为 ESP32-C3 系列芯片上电、复位时序图。各参数说明如表 3 所示。

ESP32-C3 系列芯片芯片上电、复位时序图图 5: ESP32-C3 系列芯片上电、复位时序图

ESP32-C3 系列芯片上电、复位时序图参数说明表 3: ESP32-C3 系列芯片上电、复位时序图参数说明

2.4 Strapping 管脚 
ESP32-C3 系列芯片共有三个 Strapping 管脚。 
• GPIO2 • GPIO8 • GPIO9 
软件可以读取 GPIO_STRAP_REG 寄存器的 GPIO_STRAPPING 字段,获取 GPIO2、GPIO8 和 GPIO9 的值。寄 存器具体描述请见 《ESP32-C3 技术参考手册》 IO 交换矩阵寄存器列表章节。 在芯片的系统复位过程中,Strapping 管脚对自己管脚上的电平采样并存储到锁存器中,锁存值为“0”或“1”, 并一直保持到芯片掉电或关闭。 
系统复位有以下几种: 
• 上电复位 • RTC 看门狗复位 • 欠压复位 • 模拟看门狗复位 • 晶振时钟毛刺检测复位 
GPIO9 默认连接内部上拉。如果该管脚没有外部连接或者连接的外部线路处于高阻抗状态,则锁存值为 “1”。 为改变 Strapping 的值,您可以应用外部下拉/上拉电阻,或者应用主机 MCU 的 GPIO 控制 ESP32-C3 系列上 电复位时的 Strapping 管脚电平。 复位放开后,Strapping 管脚和普通管脚功能相同。 配置 Strapping 管脚的详细启动模式请参阅表 4 。 

表 4: Strapping 管脚

ESP32-C3 系列芯片 Strapping管脚ESP32-C3 系列芯片 Strapping管脚1 GPIO8 = 0 且 GPIO9 = 0 不可使用。

图 6 显示了 CHIP_EN 上电前和上电后 Strapping 管脚的建立时间和保持时间。各参数说明如表 5 所示。

ESP32-C3 系列芯片 Strapping管脚的建立时间和保持时间

图 6: Strapping 管脚的建立时间和保持时间

表 5: Strapping 管脚的建立时间和保持时间的参数说明

ESP32-C3 系列芯片 Strapping管脚的建立时间和保持时间参数3.功能描述 
本章描述 ESP32-C3 系列的各个功能模块。 

3.1CPU 和存储 
3.1.1CPU 
ESP32-C3 系列搭载低功耗 RISC-V 32 位单核处理器,具有以下特性: • 四级流水线架构,支持 160 MHz 的时钟频率 • RV32IMC ISA • 支持 32 位乘法器、32 位除法器 • 支持多 32 个向量中断,共 7 个优先级 • 支持多 8 个硬件断点/观察点 • 支持多 16 个 PMP 区域 • 用于调试的 JTAG 接口 

3.1.2片上存储 
ESP32-C3 系列片上存储包括: • 384 KB 的 ROM:用于程序启动和内核功能调用 • 400 KB 片上 SRAM:用于数据和指令存储。400 KB 中,有 16 KB 配置为 cache 专用 • RTC 快速存储器:为 8 KB 的 SRAM,可被主 CPU 访问,在 Deep-sleep 模式下可以保存数据 • 4 Kbit 的 eFuse:其中 1792 位保留给用户使用,例如用于存储密钥和设备 ID • 嵌入式 flash:不同型号有差异,详见章节 1 产品型号对比 

3.1.3外部 flash 
ESP32-C3 系列支持多个外部 SPI、Dual SPI、Quad SPI 和 QPI flash。 CPU 的指令空间、只读数据空间可以映射到外部 flash,外部 flash 可以大支持 16 MB。ESP32-C3 系列支持 基于 XTS-AES 的硬件加解密功能,从而保护开发者 flash 中的程序和数据。 通过高速缓存,ESP32-C3 系列一次多可以同时有: • 8 MB 的指令空间以 64 KB 的块映射到 flash,支持 8 位、16 位和 32 位读取。 • 8 MB 的数据空间以 64 KB 的块映射到 flash,支持 8 位、16 位和 32 位读取。

说明: ESP32-C3 系列芯片启动完成后,软件可以自定义片外 flash 到 CPU 地址空间的映射。

3.1.4存储器映射 
ESP32-C3 系列的地址映射结构如图 7 所示。

ESP32-C3 系列芯片地址映射结构图 7: 地址映射结构

说明: 图中灰色背景标注的地址空间不可用。

3.1.5Cache 
ESP32-C3 系列采用八路组相连只读 cache 结构,具有以下特性: • cache 的大小为 16 KB • cache 的块大小为 32 字节 • 支持 pre-load 功能 • 支持 lock 功能 • 支持关键字优先 (critical word first) 和提前重启 (early restart
3.2系统时钟 
3.2.1CPU 时钟 
CPU 时钟有三种可能的时钟源: 
• 外置主晶振时钟 • 快速 RC 振荡器时钟(通常为 17.5 MHz,频率可调节) • PLL 时钟 
应用程序可以在外置主晶振、PLL 时钟和快速 RC 振荡器时钟时钟中选择一个作为时钟源。根据不同的应用程 序,被选择的时钟源直接或在分频之后驱动 CPU 时钟。CPU 一旦发生复位后,CPU 的时钟源默认选择为外置 主晶振时钟,且分频系数为 2。
3.2.2RTC 时钟 
RTC 慢速时钟应用于 RTC 计数器、RTC 看门狗和低功耗控制器,有三种可能的时钟源: • 外置低速 (32 kHz) 晶振时钟 • 内置慢速 RC 振荡器(通常为 136 kHz,频率可调节) • 内置快速 RC 振荡器分频时钟(由内置快速 RC 振荡器时钟经 256 分频生成) 
RTC 快速时钟应用于 RTC 外设和传感器控制器,有 2 种可能的时钟源: • 外置主晶振二分频时钟 • 内置快速 RC 振荡器时钟(通常为 17.5 MHz,频率可调节)

3.3模拟外设 
3.3.1模/数转换器 (ADC) ESP32-C3 系列集成了两个 12 位 SAR ADC,共支持 6 个模拟通道输入。 • ADC1 支持 5 个模拟通道输入,已在工厂校准。 • ADC2 支持 1 个模拟通道输入,未在工厂校准。 
有关 ADC 特性,请参考表 14。

3.3.2温度传感器 
温度传感器生成一个随温度变化的电压。内部 ADC 将传感器电压转化为一个数字量。 温度传感器的测量范围为–40 °C 到 125 °C。温度传感器一般只适用于监测芯片内部温度的变化,该温度值会随 着微控制器时钟频率或 IO 负载的变化而变化。一般来讲,芯片内部温度会高于环境温度。

3.4数字外设 
3.4.1通用输入/输出接口 (GPIO) 
ESP32-C3 系列共有 22 个 GPIO 管脚,通过配置对应的寄存器,可以为这些管脚分配不同的功能。除作为数字 信号管脚外,部分 GPIO 管脚也可配置为模拟功能管脚,比如 ADC 等管脚。 所有 GPIO 都可选择内部上拉/下拉,或设置为高阻。GPIO 配置为输入管脚时,可通过读取寄存器获取其输入 值。输入管脚也可经设置产生边缘触发或电平触发的 CPU 中断。数字 IO 管脚都是双向、非反相和三态的,包括带有三态控制的输入和输出缓冲器。这些管脚可以复用作其他功能,例如 UART、SPI 等。当芯片低功耗运行 时,GPIO 可设定为保持状态。 IO MUX 和 GPIO 交换矩阵用于将信号从外设传输至 GPIO 管脚。两者共同组成了芯片的 IO 控制。利用 GPIO 交换矩阵,可配置外设模块的输入信号来源于任何的 IO 管脚,并且外设模块的输出信号也可连接到任意 IO 管 脚。表 6 列出了所有 GPIO 管脚的 IO MUX 功能。更多关于 IO MUX 和 GPIO 交换矩阵的信息,请参考 《ESP32-C3 技术参考手册》 的 IO MUX 和 GPIO 交换矩阵 (GPIO, IO_MUX) 章节。

表 6: IO MUX 管脚功能

ESP32-C3 系列芯片IO MUX管脚功能复位 
每个管脚复位后的默认配置。 
• 0 - 输入关闭,高阻(IE = 0) • 1 - 输入使能,高阻(IE = 1) • 2 - 输入使能,下拉电阻使能(IE = 1,WPD = 1) • 3 - 输入使能,上拉电阻使能(IE = 1,WPU = 1) • 4 - 输出使能,上拉电阻使能(OE = 1, WPU = 1) • 0* - 输入关闭,上拉电阻使能(IE = 0,WPU = 0,USB_WPU = 1),具体见说明 
• 1* - eFuse 的 EFUSE_DIS_PAD_JTAG 位为 
0 时(初始默认值),管脚复位后输入使能,上拉电阻使能(IE = 1,WPU = 1)
1 时,管脚复位后输入使能,高阻(IE = 1)

建议对处于高阻态的管脚配置上拉或下拉,以避免不必要的耗电。用户可参考表 13 对上下拉电阻的描述在 PCB 设计中实现上下拉,或在软件初始化时开启管脚自带的上下拉。

说明 
• R - 管脚具有模拟功能。 • USB - GPIO18、GPIO19 为 USB 管脚,USB 管脚的上拉电阻由管脚上拉和 USB 上拉共同控制,当其中 任意一个为 1 时,对应管脚上拉电阻使能。USB 上拉由 USB_SERIAL_JTAG_DP_PULLUP 位控制。 • G - 管脚在芯片上电过程中有毛刺,具体见表 7。 

表 7: 芯片上电过程中的管脚毛刺

ESP32-C3 系列芯片芯片上电过程中的管脚毛刺

1 低电平毛刺:在持续期间维持低电平状态; 高电平毛刺:在持续期间维持高电平状态; 上拉毛刺:在持续期间维持上拉状态; 下拉毛刺:在持续期间维持下拉状态。

3.4.2串行外设接口 (SPI) 
ESP32-C3 系列共有三个 SPI(SPI0、SPI1 和 SPI2)。SPI0 和 SPI1 只可以配置成 SPI 存储器模式,SPI2 既可 以配置成 SPI 存储器模式又可以配置成通用 SPI 模式。 • SPI 存储器 (SPI Memory) 模式 SPI 存储器模式(SPI0,SPI1 和 SPI2)用于连接 SPI 接口的外部存储器。SPI 存储器模式下数据传输长度 以字节为单位,高支持四线 STR 读写操作。时钟频率可配置,STR 模式下支持的高时钟频率为 120 MHz。 • SPI2 通用 SPI (GP-SPI) 模式 SPI2 作为通用 SPI 时,既可以配置成主机模式,又可以配置成从机模式。主机模式和从机模式均支持双 线全双工和单线、双线或四线半双工通信。通用 SPI 的主机时钟频率可配置;数据传输长度以字节为单 位;时钟极性 (CPOL) 和相位 (CPHA) 可配置;可连接 GDMA 通道。 – 在主机模式下,时钟频率高为 80 MHz,支持 SPI 传输的四种时钟模式。 – 在从机模式下,时钟频率高为 60 MHz,也支持 SPI 传输的四种时钟模式。 通常情况下,ESP32-C3 系列和外部 flash 芯片的数据端口连接关系是:

表 8: ESP32-C3 系列和外部 flash 芯片的连接关系

ESP32-C3 系列芯片和外部flash芯片的链接关系

3.4.3通用异步收发器 (UART) 
ESP32-C3 系列有两个 UART 接口,即 UART0 和 UART1,支持异步通信(RS232 和 RS485)和 IrDA,通信速 率可达到 5 Mbps。UART 支持 CTS 和 RTS 信号的硬件流控以及软件流控(XON 和 XOFF)。两个 UART 接口通 过共用的 UHCI0 接口与 GDMA 相连,均可被 GDMA 访问或者 CPU 直接访问。 

3.4.4I2C 接口 
ESP32-C3 系列有一个 I2C 总线接口,根据用户的配置,总线接口可以用作 I2C 主机或从机模式。I2C 接口支 持: • 标准模式 (100 Kbit/s) • 快速模式 (400 Kbit/s) • 速度高可达 800 Kbit/s,但受制于 SCL 和 SDA 上拉强度 • 7 位寻址模式和 10 位寻址模式 • 双寻址模式 • 7 位广播地址 用户可以配置指令寄存器来控制 I2C 接口,从而实现更多灵活的应用。 

3.4.5I2S 接口 
ESP32-C3 系列有一个标准 I2S 接口,可以以主机或从机模式,在全双工或半双工模式下工作,并且可被配置 为 I2S 串行 8 位、16 位、24 位、32 位的收发数据模式,支持频率从 10 kHz 到 40 MHz 的 BCK 时钟。 I2S 接口连接 GDMA 控制器。支持 TDM PCM、TDM MSB 对齐、TDM 标准和 PDM TX 接口。 3.4.6 红外遥控器 红外遥控器 (RMT) 支持双通道的红外发射和双通道的红外接收。通过程序控制脉冲波形,遥控器可以支持多种 红外协议和单线协议。四个通道共用一个 192 × 32 位的存储模块来存放收发的波形。 

3.4.6LED PWM 控制器 
LED PWM 控制器可以用于生成六路独立的数字波形,具有如下特性: • 波形的周期和占空比可配置,占空比精确度可达 18 位 • 多种时钟源选择,包括 APB 总线时钟、外置主晶振时钟 • 可在 Light-sleep 模式下工作 • 支持硬件自动步进式地增加或减少占空比,可用于 LED RGB 彩色梯度发生器

3.4.8 通用 DMA 控制器
ESP32-C3 系列包含一个六通道的通用 DMA 控制器(简称 GDMA),包括三个发送通道和三个接收通道,每个 通道之间相互独立。这六个通道被具有 DMA 功能的外设所共享,通道之间支持可配置固定优先级。 通用 DMA 控制器基于链表来实现对数据收发的控制,并支持外设与存储器之间及存储器与存储器之间的高速 数据传输。每个通道支持访问片内 RAM。 ESP32-C3 系列中有六个外设具有 DMA 功能,这六个外设是 SPI2、UHCI0、I2S、AES、SHA 和 ADC。

3.4.9 USB 串口/JTAG 控制器
ESP32-C3 集成一个 USB 串口/JTAG 控制器,具有以下特性: • 兼容 USB 2.0 全速标准,传输速度高可达 12 Mbit/s(注意,该控制器不支持 480 Mbit/s 的高速传输模 式) • 包含 CDC-ACM 虚拟串口及 JTAG 适配器功能 • 可编程嵌入式/外部 flash • 利用紧凑的 JTAG 指令,支持 CPU 调试 • 芯片内部集成的全速 USB PHY

3.4.10 TWAI® 控制器
ESP32-C3 系列带有一个 TWAI® 控制器,具有如下特性: • 兼容 ISO 11898-1 协议 • 支持标准帧格式(11 位 ID)和扩展帧格式(29 位 ID) • 比特率从 1 Kbit/s 到 1 Mbit/s • 多种操作模式:工作模式、只听模式和自检模式(传输无需确认) • 64 字节接收 FIFO • 数据接收过滤器(支持单过滤器和双过滤器模式) • 错误检测与处理:错误计数器、可配置的错误中断阈值、错误代码记录和仲裁丢失记录

3.5 射频和 Wi-Fi
ESP32-C3 系列射频包含以下主要模块: • 2.4 GHz 接收器 • 2.4 GHz 发射器 • 偏置 (Bias) 和线性稳压器 • Balun 和收发切换器 • 时钟生成器

3.5.1 2.4 GHz 接收器
2.4 GHz 接收器将 2.4 GHz 射频信号解调为正交基带信号,并用两个高精度、高速的 ADC 将后者转为数字信 号。为了适应不同的信道情况,ESP32-C3 系列集成了 RF 滤波器、自动增益控制 (AGC)、DC 偏移补偿电路和 基带滤波器。

3.5.2 2.4 GHz 发射器 2.4 GHz 发射器将正交基带信号调制为 2.4 GHz 射频信号,使用大功率互补金属氧化物半导体 (CMOS) 功率放 大器驱动天线。数字校准进一步改善了功率放大器的线性。 为了抵消射频接收器的瑕疵,ESP32-C3 系列还另增了校准措施,例如: • 载波泄露消除 • I/Q 相位匹配 • 基带非线性抑制 • 射频非线性抑制 • 天线匹配 这些内置校准措施缩短了产品的测试时间,并且不再需要测试设备。 3.5.3 时钟生成器 时钟生成器为接收器和发射器生成 2.4 GHz 正交时钟信号,所有部件均集成于芯片上,包括电感、变容二极管、 环路滤波器、线性稳压器和分频器。 时钟生成器带有内置校准电路和自测电路。运用自主知识产权的优化算法,对正交时钟的相位和相位噪声进行 优化处理,使接收器和发射器都有好的性能表现。 3.5.4 Wi-Fi 射频和基带 ESP32-C3 系列 Wi-Fi 射频和基带支持以下特性: • 802.11b/g/n • 802.11n MCS0-7 支持 20 MHz 和 40 MHz 带宽 • 802.11n MCS32 • 802.11n 0.4 µs 保护间隔 • 数据率高达 150 Mbps • 接收 STBC(单空间流) • 可调节的发射功率 • 天线分集 ESP32-C3 系列支持基于外部射频开关的天线分集与选择。外部射频开关由一个或多个 GPIO 管脚控制, 用来选择合适的天线以减少信道衰落的影响。 3.5.5 Wi-Fi MAC ESP32-C3 系列完全遵循 802.11 b/g/n Wi-Fi MAC 协议栈,支持分布式控制功能 (DCF) 下的基本服务集 (BSS) STA 和 SoftAP 操作。支持通过小化主机交互来优化有效工作时长,以实现功耗管理。 ESP32-C3 系列 Wi-Fi MAC 自行支持的底层协议功能如下: • 4 × 虚拟 Wi-Fi 接口 • 同时支持基础结构型网络 (Infrastructure BSS) Station 模式、SoftAP 模式、Station + SoftAP 模式和混杂模 式 • RTS 保护,CTS 保护,立即块确认 (Immediate Block ACK) • 分片和重组 (Fragmentation and defragmentation)• TX/RX A-MPDU,TX/RX A-MSDU • 传输机会 (TXOP) • 无线多媒体 (WMM) • GCMP、CCMP、TKIP、WAPI、WEP、BIP、WPA2 个人模式或 WPA2 企业模式 (WPA2-PSK/WPA2-Enterprise) 及 WPA3 个人模式或 WPA3 企业模式 (WPA3-PSK/WPA3-Enterprise) • 自动 Beacon 监测(硬件 TSF) • 802.11mc FTM 3.5.6 联网特性 乐鑫提供的固件支持 TCP/IP 联网、ESP-WIFI-MESH 联网或其他 Wi-Fi 联网协议,同时也支持 TLS 1.0、1.1、 1.2。 3.6 低功耗蓝牙 ESP32-C3 系列包含了一个低功耗蓝牙 (Bluetooth Low Energy) 子系统,集成了硬件链路层控制器、射频/调制 解调器模块和功能齐全的软件协议栈。低功耗蓝牙子系统支持 Bluetooth 5 和 Bluetooth mesh。 3.6.1 低功耗蓝牙射频和物理层 ESP32-C3 系列低功耗蓝牙射频和物理层支持以下特性: • 1 Mbps PHY • 2 Mbps PHY,用于提升传输速率 • Coded PHY (125 Kbps and 500 Kbps),用于提升传输距离 • 硬件实现 Listen Before Talk (LBT) • 天线分集 (Antenna diversity):支持带有外部射频开关的天线分集与选择 外部射频开关由一个或多个 GPIO 管脚控制,用来选择合适的天线以减少信道衰减的影响。 3.6.2 低功耗蓝牙链路层控制器 ESP32-C3 系列低功耗蓝牙链路控制器支持以下特性: • 广播扩展 (Advertising Extensions),用于增强广播能力,可以广播更多的智能数据 • 多广播 • 支持同时广播和扫描 • 多连接,支持中心设备 (Central) 和外围设备 (Peripheral) 同时运行 • 自适应跳频和信道选择 • 信道选择算法 #2 (Channel Selection Algorithm #2) • 连接参数更新 • 高速不可连接广播 (High Duty Cycle Non-Connectable Advertising) • LE Privacy 1.2 • 数据包长度扩展 (LE Data Packet Length Extension) • 链路层扩展扫描过滤策略 (Link Layer Extended Scanner Filter policies)• 低速可连接定向广播 (Low duty cycle directed advertising) • 链路层加密 • LE Ping

3.7 低功耗管理 ESP32-C3 系列采用了先进的电源管理技术,可以在不同的功耗模式之间切换。ESP32-C3 系列支持的功耗模 式有: • Active 模式:CPU 和芯片射频处于工作状态。芯片可以接收、发射和侦听信号。 • Modem-sleep 模式:CPU 可运行,时钟频率可配置。Wi-Fi 及 Bluetooth LE 的基带和射频关闭,但 Wi-Fi 或 Bluetooth LE 可保持连接。 • Light-sleep 模式:CPU 暂停运行。任何唤醒事件(MAC、主机、RTC 定时器或外部中断)都会唤醒芯片。 Wi-Fi 或 Bluetooth LE 可保持连接。 • Deep-sleep 模式:CPU 和大部分外设都会掉电,只有 RTC 存储器处于工作状态。Wi-Fi 连接数据存储在 RTC 中。 设备在不同的功耗模式下有不同的电流消耗,详情请见表 16。 3.8 定时器 3.8.1 通用定时器 ESP32-C3 系列内置两个 54 位通用定时器,具有 16 位分频器和 54 位可自动重载的向上/向下计时器。 定时器具有如下功能: • 16 位时钟预分频器,分频系数为 1-65536 • 54 位时基计数器可配置成递增或递减 • 可读取时基计数器的实时值 • 暂停和恢复时基计数器 • 可配置的报警产生机制 • 电平触发中断 3.8.2 系统定时器 ESP32-C3 系列内置 52 位系统定时器,该系统定时器包含两个 52 位的时钟计数器和三个报警比较器,具有以 下功能: • 时钟计数器的频率固定为 16 MHz • 三个报警比较器根据不同的报警值可产生三个独立的中断 • 两种报警模式:单次特定报警值报警和周期性报警 • 支持设置 52 位的单次特定报警值和 26 位的周期性报警值 • 计数器值重新加载 • 支持当 CPU 暂停或处于 OCD 模式时,时钟计数器也暂停

3.8.3 看门狗定时器 ESP32-C3 系列中有三个看门狗定时器:两个定时器组中各一个(称作主系统看门狗定时器,缩写为 MWDT), RTC 模块中一个(称作 RTC 看门狗定时器,缩写为 RWDT)。 在引导加载 flash 固件期间,RWDT 和定时器组 0 中的 MWDT 会自动使能,以检测引导过程中发生的错误,并 恢复运行。 看门狗定时器具有如下特性: • 四个阶段,每个阶段都可配置超时时间。每阶段都可单独配置、使能和关闭。 • 如在某个阶段发生超时,MWDT 会采取中断、CPU 复位和内核复位三种超时动作中的一种,RWDT 会采 取中断、CPU 复位、内核复位和系统复位四种超时动作中的一种。 • 保护 32 位超时计数器 • 防止 RWDT 和 MWDT 的配置被误改。 • flash 启动保护 如果在预定时间内 SPI flash 的引导过程没有完成,看门狗会重启整个主系统。3.9 加密硬件加速器 ESP32-C3 系列配备硬件加速器,支持一些通用加密算法,比如 AES-128/AES-256 (FIPS PUB 197)、 ECB/CBC/OFB/CFB/CTR (NIST SP 800-38A)、SHA1/SHA224/SHA256 (FIPS PUB 180-4)、RSA3072 和 ECC 等,还支持大数乘法、大数模乘等独立运算,其中 RSA 和大数模乘运算大长度可达 3072 位,大数乘法的因 子大长度可达 1536 位。 3.10 物理安全特性 • 外部 flash 通过 AES-XTS 算法进行加密,加密算法使用的密钥无法被软件读写,因此用户的应用程序代码 与数据不会被非法获取。 • 安全启动功能确保只启动已签名(具有 RSA-PSS 签名)的固件,此功能的可信度是根植于硬件逻辑。 • HMAC 模块可以使用软件无法访问的安全密钥来生成用于身份验证或其他用途的 MAC 签名。 • 数字签名模块可以使用软件无法访问的 RSA 密钥生成用于身份验证的 RSA 签名。 • 世界控制器模块提供两个软件运行环境,可将所有硬件和软件资源划分成两种,分别放置到安全区域及普 通区域,保证普通区域硬件无法访问安全区域,从而在这两个区域之间构建安全边界。

3.11 外设管脚分配 表 9: 外设和传感器管脚分配

ESP32-C3 系列芯片外设和传感器管脚分配ESP32-C3 系列芯片外设和传感器管脚分配

ESP32-C3 系列芯片外设和传感器管脚分配4.电气特性 4.1 大额定值 超出大额定值可能导致器件损坏。这只是强调的额定值,不涉及器件的功能性操作。 

表 10: 大额定值

ESP32-C3 系列芯片 额定值4.2 建议工作条件 表 11: 建议工作条件

ESP32-C3 系列芯片建议工作条件1 更多信息请参考章节 2.3 电源管理。 2 在使用 VDD_SPI 为外设供电的使用场景中,VDD3P3_CPU 还应满足外设的使用要求,详见表 12。 3 使用单电源供电时,输出电流需要达到 500 mA 及以上。

4.3 VDD_SPI 输出特性 表 12: VDD_SPI 输出特性

ESP32-C3 系列芯片VDD_SPI输出特性在实际使用情况下,当 VDD_SPI 为 3.3 V 输出模式的时候,VDD3P3_CPU 需要考虑到 RSP I 的影响。比如在接 3.3 V flash 的情况下需满足以下条件: VDD3P3_CPU > VDD_flash_min + I_flash_max*RSP I 其中,VDD_flash_min 为 flash 的低工作电压,I_flash_max 为 flash 的大工作电流。 更多信息请参考章节 2.3 电源管理。

4.4 直流电气特性 (3.3 V, 25 °C) 

ESP32-C3 系列芯片直流电气特性表 13: 直流电气特性 (3.3 V, 25 °C)

1 VDD 是 I/O 的供电电源。 2 VOH 和 VOL 为负载是高阻条件下的测试值。

4.5 ADC 特性 表 14: ADC 特性

ESP32-C3 系列芯片ADC特性1 使用滤波器多次采样或计算平均值可以获得更好的 DNL 结果。

4.6 功耗特性 下列功耗数据是基于 3.3 V 电源、25 °C 环境温度,在 RF 接口处完成的测试结果。所有发射数据均基于 100% 的占空比测得。
表 15: RF 功耗

ESP32-C3 系列芯片RF功耗

表 16: 不同功耗模式下的功耗

ESP32-C3 系列芯片不同功耗模式下的功耗1 测量 Modem-sleep 模式功耗数据时,CPU 处于工作状态,cache 处于空闲状态。 2 在 Wi-Fi 开启的场景中,芯片会在 Active 和 Modem-sleep 模式之间切换,功耗也会在两种模式间 变化。 3 Modem-sleep 模式下,CPU 频率自动变化,频率取决于 CPU 负载和使用的外设。

4.7 可靠性认证 表 17: 可靠性认证

ESP32-C3 系列芯片可靠性认证1 JEDEC 文档 JEP155 规定:500 V HBM 能够在标准 ESD 控制流程下安全生产。 2 JEDEC 文档 JEP157 规定:250 V CDM 能够在标准 ESD 控制流程下安全生产。

4.8 Wi-Fi 射频 

表 18: Wi-Fi 频率

ESP32-C3 系列芯片Wi-Fi频率4.8.1 Wi-Fi 射频发射器 (TX) 规格 
表 19: 频谱模板和 EVM 符合 802.11 标准时的发射功率

ESP32-C3 系列芯片发射功率

表 20: 发射 EVM 测试

ESP32-C3 系列芯片发射EVM测试4.8.2 Wi-Fi 射频接收器 (RX) 规格 

表 21: 接收灵敏度

ESP32-C3 系列芯片接收灵敏度

表 22: 大接收电平

ESP32-C3 系列芯片接收电平

ESP32-C3 系列芯片接收电平

表 23: 接收邻道抑制

4.9 低功耗蓝牙射频 
表 24: 低功耗蓝牙频率

ESP32-C3 系列芯片低功耗蓝牙频率

4.9.1 低功耗蓝牙射频发射器 (TX) 规格 
表 25: 发射器特性 - 低功耗蓝牙 1 Mbps

ESP32-C3 系列芯片低功耗蓝牙1Mbps表 26: 发射器特性 - 低功耗蓝牙 2 Mbps

ESP32-C3 系列芯片低功耗蓝牙2Mbps表 27: 发射器特性 - 低功耗蓝牙 125 Kbps

ESP32-C3 系列芯片低功耗蓝牙125Kbps表 28: 发射器特性 - 低功耗蓝牙 500 Kbps

ESP32-C3 系列芯片低功耗蓝牙500Kbps

ESP32-C3 系列芯片低功耗蓝牙500Kbps4.9.2 低功耗蓝牙射频接收器 (RX) 规格 表 29: 接收器特性 - 低功耗蓝牙 1 Mbps

ESP32-C3 系列芯片接收器性能 低功耗蓝牙1Mbps表 30: 接收器特性 - 低功耗蓝牙 2 Mbps

ESP32-C3 系列芯片接收器性能 低功耗蓝牙2MbpsESP32-C3 系列芯片接收器性能 低功耗蓝牙2Mbps表 31: 接收器特性 - 低功耗蓝牙 125 Kbps    

ESP32-C3 系列芯片接收器性能 低功耗蓝牙125Kbps表 32: 接收器特性 - 低功耗蓝牙 500 Kbps

ESP32-C3 系列芯片接收器性能 低功耗蓝牙500KbpsESP32-C3 系列芯片接收器性能 低功耗蓝牙500Kbps5. 封装信息

ESP32-C3 系列芯片封装图 8: QFN32 (5×5 mm) 封装

说明: • 推荐 PCB 封装图源文件 (dxf) 可使用 Autodesk Viewer 查看; • 有关卷带、载盘和产品标签的信息,请参阅 《乐鑫芯片包装信息》。

扫二维码用手机看

视觉毫米波雷达融合方案发展现状及趋势

视觉毫米波雷达融合方案发展现状及趋势,现用的交通传感器它主要完成道路情况下的数据信息的采集,为路侧感知网络提供原始数据。目前已有的交通传感器主要有两种:一种是传感传感器,它包括感应线圈、截面雷达、地磁钉等,它们只能获取特定截面或瞬间车辆所在的车道和速度信息。其次是交通目标传感器。 目前,交通目标传感器主要分为三类: 1、AI摄像机:可以探测出交通参与者的类型,如车辆、行人和骑车者;缺点是定位精度不高,受天气、光照影响较大。 2、激光雷达:能正确地探测到静止和移动目标的位置、速度、目标的大小等信息;缺点是对环境敏感,有机械转动的部件,以及寿命和可靠性。 3、毫米波雷达:能准确探测到目标的位置、速度等信息,不受气象条件的影响,覆盖范围大,综合性价比高;缺点是横向精度较低,无法准确分辨目标类型。 基于车辆协同的路侧感知传感器需求。车辆协同系统现阶段需要支持多种全息交通管理应用场景,在未来更需要对无人驾驶提供有效的路侧数据支持。因此车路协同系统需要全域覆盖、全天候感知,对感知的正确性和实时性有较高的要求。车路协同系统根据《合作式智能交通系统车用通信系统应用层和应用数据交互标准》等行业标准分析,对路侧感知传感器提出如下要求: 1、24小时:白天,夜间,不受光线影响;雾、雨,精度不受影响。 2、大规模覆盖:每公里覆盖要求的数量较少;降低每公里部署的额外费用。 3、高度精度:定位、速度矢量精度高;面向算法。 4、多用:一个传感器完成大部分功能,降低了边缘计算的复杂性。 5、价格低廉:综合配置成本低,可靠性高,维护费用低。 视觉毫米波雷达融合一体化解决方案全新一代专为车辆协同而设计的智能传感器,它是集摄像头、毫米波雷达和高性能处理器于一体的交通传感器。通过MIPI和SPI接口,将原始视频流和雷达数据流同时接入一体机的嵌入式处理器。该方法利用嵌入式处理器直接提取原始视频流的AI目标,再利用内建坐标映射系统将视频目标投影到雷达坐标系中,对视频与雷达目标进行融合跟踪,实现全局目标的实时矢量化与跟踪。 视觉毫米波雷达融合通过内置ARM+NPU嵌入式处理器对视频和雷达数据进行实时融合,输出目标矢量数据。基于TFES目标融合边缘服务器融合多个方向的矢量目标数据,形成全局目标数据源,在边界计算层或路段上实现实时目标,为边缘计算层的决策、控制、交互等提供稳定可靠的数据支持。目标融合边缘服务器还能获得RSU通过空口收集的网联车辆信息数据,计算出整个道路交通参与者的信息。RSU可以在边缘计算单元中获得所有交通参与者的信息,并通过通讯方式向其周围智能网联车辆,通过通讯方式实现交通参与者信息的传输。 相对于已有的其它路侧感知方案,视觉毫米波雷达融合的路侧感知方案具有如下特点: 低延迟,在传统的路侧感知方案中,通常使用多点传感器(视频,毫米波雷达)将其放入MEC的GPU中,再用MEC的GPU进行视频处理和目标融合。但是受网络传输和视频编解码的限制,视频目标的延时较大,且无法控制(RTSP推流延迟一般在200ms–1s),这与雷达的目标融合有一定的困难,而且精度较低。 与之相比,视觉毫米波雷达融合摄像机原始视频流线直接与设备内部处理器相连,省去了网络传输和视频编解码过程,将延迟控制在50ms以内。 在协作式智能交通系统的车用通信系统应用层和数据交互标准等标准中,明确规定,每个场景的端到端延迟不得超过100毫秒。提出了一种基于雷视融合的路侧感知方案。 1、覆盖面广 探测距离远,可视化角度大于90°,适合于人车混行、车流密集、易拥堵的路段,能同时识别出行人、非机动车辆等,并能识别出行人、非机动车等目标,并能有效降低车辆的成本。 2、高准确性的数据 采用MIMO一体化系统,具有±0.32m的距离精度和±±0.32m的方位精度(远距)和±0.3°(近距)的精度,在0.1m/s范围内,可以正确地检测、分辨行人和车辆,并能进行全息还原,从而实现全局目标向量化。 3、独立多功能 视觉毫米波雷达融合方案能够满足汽车协同标准中DAYI和DAYII全场景对路侧感知的需求。内建有先进的交通算法和丰富的本地事件输出,例如拥挤事件、异常停车事件、逆行事件、大货车低速预警、城市路口行人碰撞预警等。它能为车辆协同应用提供数据支持,帮助车辆提前锁定消除远、盲区安全冲突,在辅助人工驾驶的同时,还可以为单车自动驾驶技术提供更为可靠的环境信息支持。 4、工程部署容易 视觉毫米波雷达融合方案采用-40°C到70°C的宽温设计,IP65防水,完全适应各种户外场景。使用专用工具可以对雷视融合进行现场配置,可以在15-20分钟内完成雷达、录像及GPS坐标系的标定。 视觉毫米波雷达融合方案可以应用于多种场景中,主要分为两大类:智能交通管理和V2X车联网端感知。 1、面向智能交通管理:主要应用于城市路口自适应信号控制、违章抓拍辅助、车流量统计、非机动车检测、交通路段流量检测、车辆识别、事故检测、速度测量、拥挤检测、抛洒物检测、城市和农村道路交通流量统计及预警系统。 2、视觉毫米波雷达融合方案将感知融合算法向前移动到终端,大大减少了在边缘侧的感知延时和计算压力,利用视频和毫米波雷达各自的优点,提高了识别精度。车辆协同的关键系统是路侧感知系统。本文提出了一种基于雷视融合的方案,它能够广泛配置和实现路侧感知的全覆盖,满足了各种应用场景和位置需求。目前,雷视融合一体机已经在多个试点地区部署应用。在未来,雷视融合一体机将进一步提高探测精度,融入更多交通事件检测算法中,充分支持路侧感知对传感器和数据的多种需求。
点击查看更多
20
2021-10

基于乐鑫wifi模块ESP32的ObnizOS对用户开放ACK模块实现Alexa语音控制

发布时间: : 2021-10--20
基于乐鑫wifi模块ESP32的ObnizOS对用户开放ACK模块实现Alexa语音控制,去年9月,日本物联网公司CambrianRobotics发布了Obniz开发板,其基础是乐鑫wifi模块ESP32-WROOM-32模块,Obniz和云服务。ObnizOS是一个运行于Obniz开发板的操作系统,用户可以在将ESP32和ESP32-WROOM-32模块的设备上安装和使用,或者通过调用Obniz云上的API进行操作。目前,所有Obniz平台账户都可以免费使用ObnizOS操作系统(每个用户只限一台设备)。 ObnizOS性能: 1、通过IO/外设/乐鑫wifi模块低功耗蓝牙云的远程控制功能, 2、支持通过在Obniz云保持双向通信 3、通信通道中进行TLS1.2加密和服务器身份验证 4、使用公钥身份认证的设备认证机制 5、确保持续在线,如 ping 和看门狗定时器 6、可使用 Wi-Fi / 以太网进行连网 7、预先网络配置功能(串行通信或 softAP) 8、静态 IP 代理可连接到隐藏的 SSID 9、OTA升级特性 基于乐鑫wifi模块ESP32的Obniz是一款可连接云的开发板,对Obniz云上的API(比如REST或者WebSocketAPI)进行控制。通过obniz.js库,Obniz的界面可以直接在Web页面上运行。 利用Obniz,用户可轻松完成各种类型的硬件项目。使用者不需要使用应用程式或Slogger固件,只需将马达或传感器与Obniz开发板相连,就可以通过网络、电脑或手机编写程式。另外,Obniz的开发控制台还具备在线编辑功能。这样,用户可以跳过建立开发环境的步骤,直接创建并运行自己的程序。 乐鑫发布了AlexaConnectKit(ACK)模块,帮助用户轻松实现Alexa语音控制。乐鑫发布AlexaConnectKit(ACK)模块乐鑫wifi模块ESP32-PICO-V3-ZERO,帮助用户实现与ACK云服务的无缝连接。并且提供了多种开箱即用的功能,如: Alexa,Frustration-FreeSetup(FFS),DashReplenishmentService(DRS)等。万物智联时代已经来临,人们开始关注智能设备和语音控制技术,乐鑫创始人兼CEO张瑞安表示。与亚马逊合作,乐鑫致力于向用户提供优惠计划,减少智能设备开发难度。乐鑫wifi模块ACK模块就是这样一种解决方案,它让用户可以很容易地构建和管理各种智能设备。 ESP32-PICO-V3-ZERO是基于ESP32-PICO-V3系统级封装(SiP)(16×23×2.3mm)的一个小型模块。ESP32-PICO-V3搭载ESP32(ECOV3)芯片,集成了4MBSPIFlash、晶振、滤波电容和RF匹配链路。由于器件高度集成,降低了下游客户的供应链压力,提高了设备控制效率。模块已经通过FCC,CE,SRRC,IC,RCM等认证。ESP32-PICO-V3-ZERO模块的核心是乐鑫的ESP32(ECOV3)芯片,集成Xtensa®双核32位LX6微处理器,它支持2.4GHzWi-Fi,蓝牙和低功耗蓝牙连接,采用台积电40纳米的低功耗工艺。 ESP32-PICO-V3-ZERO完全支持亚马逊的AlexaConnectKit(ACK)。它是一种托管服务,它可以帮助设备制造商轻松、快速地开发出支持亚马逊服务的产品,并为每台设备提供固定的云服务。ESP32-PICO-V3-ZERO自带默认的ACK固件,用户可以通过编写AlexaSkill、手机APP或者其他复杂的设备连接到Alexa和Internet。 利用乐鑫wifi模块ACK模块ESP32-PICO-V3-ZERO,用户可以轻松、快捷地构建智能家居类的物联网产品。与此同时,模块还将以其体积小、性能优异、无缝智能连接等特点,为用户提供高品质的智能连接方案。
查看详情 查看详情
19
2021-10

视觉感知和24G毫米波雷达感应模块技术在路侧上面的应用

发布时间: : 2021-10--19
视觉感知和24G毫米波雷达感应模块技术在路侧上面的应用,何谓路侧感知?路侧感知是通过各种传感器,如视觉传感器、24G毫米波雷达感应模块、激光雷达,与边缘计算设备相结合,实时获取当前道路交通参与者和路况信息。利用车路协同技术,按照约定的通信协议和数据交互规范,实现车-人-路-云之间的信息交换和指令控制。路侧感能够在一时间向驾驶员提供道路状况的实时信息,并作出诸如行人、车辆碰撞预警、前方交通警告等有效决策。意外报警等;为有关交通部门提供监测和预测道路交通环境,如车流统计、车辆违停检测、区间速度等。 路侧感知可有效弥补车辆的感知盲区,为驾驶员提供及时预警,并在一定范围内为交通部门实现车辆协同调度,可有效改善城市道路交通拥堵状况。在车联网络侧智能基础设施建设的推动下,路侧感知将使道路更“智能化”。 这个市场有多大: 据《智能网联道路系统等级定义及解释报告(征求意见稿)》,可以看出,中国公路学会从交通基础设施信息化建设、从智能、自动化角度出发,结合应用场景、混合交通、主动安全系统等情况,将交通基础设施系统划分为I0(无信息/无智能/无自动化)和I5级(基于交通基础设施的完全自动驾驶),有六个等级。 但对于不同等级的公路,其信息化(数字化/网络化)、智能化、自动化程度不同,路侧感知设备的布设就会有所不同,计算方法也会有所不同,等级越高,投入成本越大,自动化程度就越高。 通过赛文交通网络的公布数据可以看出,2018年我国公路里程数表现为:(1)城市道路400,000多公里,50多万城市路口;(2)国道里程36.30万公里,国道里程37.22万公里,农村公路里程403.97万公里;(3)高速公路14.26万公里。根据初步估算,高分辨率摄像机、24G毫米波雷达感应模块、微波雷达、RFID等感知设备,平均在高速公路/省际干线10万/公里,感知设备市场规模达到880亿;城市路口平均20万/每秒,城市路口平均20万个。同时,随着我国新基础设施建设的推进,公路里程数持续增长,路侧感知设备的市场份额日益增长。 路侧感知设备是车联网系统的核心组成部分,随着车联网通信平台的建设的完成,其所占的比例将逐年增加。 发展形势如何: 大规模建设5G通信平台。5G网络具有低延迟、高可靠性、高容量等特点,5G的商用使5G实现了车、路侧端的实时通讯。5G通信平台是车联网络侧的核心设备。现在华为、大唐、高新兴等集团公司都积极参与到5G通信平台的建设中,行业巨头公司的加入,无疑是看到了车联网络侧网侧的巨大商机。 云的超强计算能力: 云强大的存储能力、计算能力、安全可靠以及资源丰富度,能够在车载、路侧感知端有效处理交通数据信息,该系统能实时分析道路交通状况,并将处理后的交通数据传输到周边车辆及相关平台,重新调度现有车辆,优化配置交通状态。当前,腾讯、百度、阿里、华为、滴滴等行业巨头都在积极推进其云控平台的建设,优化汽车后端平台。 大规模地配置路基设备: 随着政府新基建的推进,我国在城市道路、高速公路上部署了大量的视频监控、雷达等设备,并开始形成规模。当前,我国正在全面推进5G通信平台和车联网后端平台的建设,政府也积极发展智慧交通,大力推进路侧智能基础设施建设。唯有将车端、云端和路端三方技术与设备相结合,实现“感知、通信、计算”三大功能。所以路侧感知是构建智能交通系统不可或缺的一环。现在,越来越多的传感器厂商和集成商,已经开始采用局路侧感知技术。 将来的道路在哪里: 开发适用于路侧感知网络的传感器。目前在路侧感知方案中,大多使用传统交通传感器,如卡口摄像机、交通摄像机、交通雷达等,甚至还有车载激光雷达和24G毫米波雷达感应模块。由于传统的交通或车载传感器在设计之初并不是为车侧感知量身定制,因此在某些核心指标,如探测范围,探测精度,时延等,都无法满足车路协同的标准要求。 路侧感知是车辆协作的核心系统,其感知数据的质量直接影响到各个场景应用的效果和可行性。由于缺少合适的路侧传感器,目前路侧感知尚未形成规模。根据车辆路径协作的实际情况和标准要求,研究开发具有针对性的地路侧传感器是当务之急,是推动路侧感知快速发展的重要手段。 较优的路侧感知方案: 目前路侧感知方案大多采用摄像机、激光雷达、24G毫米波雷达感应模块获取路面信息,通过网络汇集到边缘计算单元MEC进行数据融合与分析。根据RSU与智能网联汽车,通过计算整个道路交通参与者的信息,然后按约定的通信与交互标准传递到路侧车辆。但是这种类似强MEC方案,对路侧网络的质量要求很高,标定困难,系统时延,功耗和综合成本较高,且很难满足其需求。 怎样利用这些传感器的特性,使它们大限度地发挥作用;研究开发低成本、低功耗边缘计算设备是路侧感知中亟待解决的重要问题。
查看详情 查看详情
19
2021-10

基于乐鑫方案深圳代理商ESP32-WROOM的物联网微平台乐鑫MINI系列模块

发布时间: : 2021-10--19
基于乐鑫方案深圳代理商ESP32-WROOM的物联网微平台乐鑫MINI系列模块,在巴西,物联网初创企业SiriNEOTechnologies发布了基于乐鑫ESP32-WROOM系列模块的物联网微平台JARMESP32。 SiriNEOTechnologies是一家在巴西成立的公司,致力于物联网连接,电信生态和数据分析。本公司基于乐鑫方案深圳代理商ESP32-WROOM系列模块推出JARMESP32物联网平台,专为需要快速连接和低功耗的项目设计。JARMESP32具有ESP32-WROOM系列模块的功能特性,支持Wi-Fi(802.11b/g/n)、经典蓝牙和低功耗蓝牙双模式、配置8MBFlash、64MbitSPIFlash及板载UFL天线等。 JARMESP32不像市场上其它的ESP32开发板,集成了大部分功能传感器,使用户可以轻松、快速地利用物联网感知系统平台。这样,JARMESP32就能为各种物联网系统提供多样化的解决方案,借助于扩展板、屏蔽板和无线模块(例如LoRaWAN、SIGFOX、GPRS和ZigBEE)。JARMESP32适合各种物联网应用场景,您是否已经迫不及待?利用JARMESP32快速创建你自己的IoT解决方案! 乐鑫方案深圳代理商MINI系列!乐鑫科技推出基于ESP32-S2F芯片的ESP32-S2-MINI系列模块,其中包括ESP32-S2-MINI-1和ESP32-S2-MINI-1U通用Wi-FiMCU模块。该产品具有强大的功能和丰富的外部接口,乐鑫方案深圳代理商是物联网、可穿戴电子设备以及智能家居等应用场景的理想选择。 SP32-S2-MINI-1采用PCB板载天线,ESP32-S2-MINI-1U采用IPEX天线,两个模块都配有4MBSPIFlash。ESP32-S2-MINI模块基于ESP32-S2FH4芯片设计。ESP32-S2FH4搭载Xtensa®32位LX7单核处理器,工作频率高达240MHz,具有低功耗协处理器,用来替代CPU执行不需要大量计算的任务,比如监视外设的状态变化,或者某些模拟量是否超过阀值等等。ESP32-S2FH4集成了丰富的外部接口,包括SPI.I2S.UART.I2C.LEDPWM.LCD接口.Camera接口.ADC.DAC.触控传感器.温度传感器,高可达43个GPIO。同时,它也提供了USBOn-The-Go(OTG)的全速度接口,让用户可以在任何时间和任何地方使用USB。 当前,FCC.CE和SRRC认证正在通过ESP32-S2-MINI-1和ESP32-S2-MINI-1,认证工作已经完成,届时,这两个模块将符合美国联邦通信委员会欧盟以及中国无线电管理委员会制定的健康.安全和环保标准。乐鑫方案深圳代理商ESP32-S2-MINI系列模块及相应的开发板将在十二月正式投入生产。乐鑫MINI系列产品将根据ESP32、ESP32-S3和ESP32-C3推出模块和开发板! 如需更多产品信息,请与乐鑫方案深圳代理商飞睿科技支持联系。如果需要购买样品,请直接点击购买。
查看详情 查看详情
18
2021-10

微波雷达安防传感器模块在监狱/赛事/军事训练场机场应用

发布时间: : 2021-10--18
微波雷达安防传感器模块在监狱/赛事/军事训练场机场应用,微波雷达安防传感器模块主要针对空中低小慢目标的侦察跟踪,采用先进的多普勒技术,具有超高的范围精度,可输出目标三坐标信息(选用测高阵面可以实现高度测量),该系统能同时对多个目标做出快速反应,并具有搜索转局部搜索功能,可以为您提供高质量且经济有效的户外保护探测解决方案。 微波雷达安防传感器模块通过天线发射高频电磁波并接收处理反射波,以此判断覆盖范围内物体的移动,给出相应电信号。用于对低空小慢目标和行人车辆进行探测,可用于警戒和目标显示,能实时、准确地给出目标的轨迹信息。 应用于监狱、军事基地等重点地区,对微型/小型民用无人机进行探测,警戒和目标指示,能正确地给出目标的方位、距离、高度和速度等轨迹信息。在监狱、展览馆、军事基地等重点场所,主要用来探测警报器和靶标,能正确地给出目标的方位、距离、高度和速度等航迹信息,并对多批目标进行处理。 1、监狱/拘留所 狱中、看守所属于保密的隐私区,同时又属于敏感区,而针对外面的入侵、偷拍、投送等行为则需要重点防范,根据所掌握的情况,我司雷达可以对管制区域进行扫描探测,发现和跟踪非法侵入人员,一时间上报目标方位信息。 2、赛事/会议 有些重大政治会议和大型体育活动在举行时,面对低空飞行器的干扰和偷拍,会对比赛现场人员、赛程/日程产生很大影响,我司雷达可在场馆周围布防,对此类飞行器进行探测跟踪和报告,以达到提前预警的效果。 3、机场 在民用机场和军事训练机场等地区,当有人员非法闯入时,一旦发生非法闯入,就会对人民的公共安全和国家信息安全造成极大的不利影响,我司微波雷达安防传感器模块在相关机场进行了大量的测试试验,曾经有成功布防户外非法入侵的案例。
查看详情 查看详情
18
2021-10

乐鑫一级代理商ESP32支持TensorFlowLiteMicro/ESP32免费流媒体服务

发布时间: : 2021-10--18
乐鑫一级代理商ESP32支持TensorFlowLiteMicro/ESP32免费流媒体服务,本论文将以ESP-EYE开发板为例,说明TensorFlowLiteMicro如何在ESP32上运行。 八月二十八日,TensorFlow在官方博客上宣布TensorFlowLiteMicro支持乐鑫一级代理商ESP32。 下面是博客原文: 目前,ESP32已广泛用于智能家庭以及无线连接设备和工程中,该系统可以连接各种传感器和执行器,以实现对环境的感知与响应。当在ESP32上运行TensorFlowLiteMicro时,本地推断引发的各种用例场景都会出现。乐鑫一级代理商ESP32采用双核处理器,并具备出色的功能,极大地减少了运行TFMicro繁琐的工作。Wi-Fi回传可以帮助用户进行远程部署,并基于做出的推论触发动作。 脸部监控/智能门铃摄像头的例子 本文把大家熟悉的人脸检测实例改造成一个智能门铃,并用ESP-EYE开发板作演示。值得注意的是,这个例子使用了人脸检测技术(在摄像机前检测人脸),而不是身份识别。 ESP-EYE开发板包括ESP32 Wi-Fi/Bluetooth MCU和2MP摄像头。   对于这个例子,一旦开发板上的摄象机检测到一个人靠近设备,它将自动发送一条通知邮件。 行动指南: 1、准备乐鑫一级代理商ESP-EYE,此外,还需要准备一条USB转接口的数据线,以使ESP-EYE能够与Windows/Linux/macOS系统的主机相连。 2、codeBase:https://github.com/espressif/tensorflow/ 3、安装开发主机:通过ESP32的交叉编译工具链和实用程序建立开发主机,并根据ESP-IDF的入门指南建立工具链和ESP-IDF。 4、生成案例make -f tensorflow/lite/micro/tools/make/Makefile TARGET=esp generate_doorbell_camera_esp_project,使用以上命令。 5、存取示例项目目录:cd tensorflow/lite/micro/tools/make/gen/esp_xtensa-esp32/prj/doorbell_camera/esp-idf。 6、通过下面的命令克隆乐鑫一级代理商ESP32摄像机组件:$ git clone https://github.com/espressif/esp32-camera components/esp32-camera。 7、将照相机和邮箱地址配置为:idf.py menuconfig。 8、在CameraPins和SMTP中,选择cameradetails和emaildetails。 9、构建示例:idf.pybuild,trade。使用下面的命令idf.py --port/dev/ttyUSB0 flash monitor,来刷新和运行该程序。 现在,无论何时检测到人脸,程序都将一封电子邮件发送给已配置好的邮箱地址。 做完门铃声摄像头示例之后,您也可以试用TFMicro的其他应用项目,比如hello_world和micro_speech。 乐鑫一级代理商ESP32是一个强大的MCU,具有240MHz的时钟频率。仅使用一个CPU内核,一秒之内就可以完成(大约700ms)检测(我们还会进一步优化性能以缩短时间),因此可以让另一个内核自由地处理应用中的其他任务。 ESPFLIX:一个基于乐鑫一级代理商ESP32的免费流媒体服务。 著名创造者Rossum告诉我们如何构建一个开放源码机顶盒,以及如何让它访问基于ESP32的视频流服务。 近日,著名创客Rossum在博客上展示了他创建的ESPEFLIX,它以ArduinoIDE框架为基础,可以在乐鑫一级代理商ESP32上正常工作。Hackaday网站作者LewinDay认为:“目前,如果您的电视不能直接使用流媒体服务,那么这样你就有很多选择了,比如用AppleTV,Chromecast或者Android机顶盒来播放你想看的东西。但是如果你仍然有复古的情结,ESPFLIX将会成为你的不二选择。” ESPFLIX是Rossum基于以前的ESP_8_BIT项目而开发的,它的示意图很简单: ESPFLIX还具备NTSC/PAL彩色合成视频输出功能,增加视频、音频编解码器及AWS流媒体服务,这样,就可以创建一种类似于Netflix(一家会员订阅的流媒体播放平台)的开源平台。ESPFLIX的视频输出采用MPEG1标准,分辨率352×192;通过SBC音频编解码器输出。SBC一开始主要用于蓝牙设备,而在这个项目中,由于它有非常小的采样缓冲,所以很容易用乐鑫一级代理商ESP32的RAM解码。由ESP32产生合成视频,输出视频。 ESPFLIX视频库现在包含了AmazonWebServices上的非版权资源。Rossum在充分发挥AWSCloudfront快速内容发布网络的优势的同时,它对ESP32的RAM进行了巧妙的利用,使得ESPFLIX的视频流服务在全球范围内得以实现。 就像Rossum说的:乐鑫一级代理商ESP32是一款精密和功能强大的设备。用它,你就能开发一台比一个遥控器还便宜的机顶盒!在获得与AWS平台相似的视频流服务时,用户只需要花很少的时间和费用。
查看详情 查看详情
上一页
1
2
...
35

地址:深圳市宝安区西乡街道麻布社区宝安互联网产业基地A区6栋7栋7706

邮箱:Sales@ferry-semi. com

版权所有©2020  深圳市飞睿科技有限公司  粤ICP备2020098907号    飞睿科技微波雷达wifi模块网站地图