这是描述信息
乐鑫代理ESP32-S2 Wi-Fi MCU-esp32-s2价格-乐鑫esp32-s2低功耗芯片

ESP32-S2系列芯片技术规格书

ESP32-S2系列芯片技术规格书 包括: ESP32-S2 ESP32-S2FH2 ESP32-S2FH4 ESP32-S2FN4R2 ESP32-S2R2 ESP32-S2 系列是高集成度的低功耗 Wi-Fi 系统级芯 片 (SoC)、专为物联网 (IoT)、移动设备、可穿戴电子设 备、智能家居等各种应用而设计,具有行业领先的低 功耗性能和射频性能。 芯片包括一个功能完备的 Wi-Fi 子系统,符合 IEEE 802.11b/g/n 协议。Wi-Fi 子系统集成了 Wi-Fi MAC、 Wi-Fi 射频和基带、天线开关、射频 Balun、功率放大 器、低噪声放大器等,提供了一个完整的 Wi-Fi 解决 方案。 ESP32-S2 系列芯片搭载 Xtensa® 32 位 LX7 单核处 理器,工作频率高达 240 MHz。芯片支持二次开发,无 需使用其他微控制器或处理器。 该系列芯片带有 320 KB SRAM,128 KB ROM,可通 过 SPI/QSPI/OSPI 接口外接 flash 和片外 RAM。 ESP32-S2 系列芯片支持多种低功耗工作状态,能够满足各种应用场景的功耗需求。芯片所特有的精细时 钟门控、动态电压时钟频率调节、可调节的射频功率 放大器的输出功率等特性,可以实现通信距离、数据 率和功耗之间的佳平衡。 ESP32-S2 系列芯片提供丰富的外设接口,包括 SPI, I2S,UART,I2C,LED PWM,LCD 接口,Camera 接 口,ADC,DAC,触摸传感器,温度传感器和多达 43 个 GPIO。此外,该系列芯片还包括一个全速 USB OnThe-Go (OTG) 接口,可以支持使用 USB 通信。 ESP32-S2 系列芯片具有多种特有的硬件安全机制。 硬件加密加速器支持 AES、SHA 和 RSA 算法。RNG、 HMAC 和数字签名 (Digital Signature) 模块提供了更多 安全性能。其他安全特性还包括 flash 加密和安全启 动 (secure boot) 签名验证等。完善的安全机制使芯片 能够满足严格的安全要求。 功能框图 图 1: 功能框图 产品特性 Wi-Fi  • 支持 IEEE 802.11 b/g/n 协议 • 在 2.4 GHz 频带支持 20 MHz 和 40 MHz 频宽 • 支持单频 1T1R 模式,数据速率高达 150 Mbps  • 无线多媒体 (WMM)  • 帧聚合 (TX/RX A-MPDU, RX A-MSDU)  • 立即块确认 (Immediate Block ACK)  • 分片和重组 (Fragmentation & defragmentation) • Beacon 自动监测(硬件 TSF)  • 4 × 虚拟 Wi-Fi 接口  • 同时支持基础结构型网络 (Infrastructure BSS) Station 模式/SoftAP 模式/混杂模式 请注意 ESP32-S2 系列芯片在 Station 模式下扫 描时,SoftAP 信道会同时改变  • 天线分集  • 802.11mc FTM CPU 和存储 • Xtensa® 32 位 LX7 单核处理器,主频高达 240 MHz  • 128 KB ROM  • 320 KB SRAM • 16 KB RTC SRAM  • 嵌入式 flash 和 PSRAM (不同型号有差异,详 见章节 1:产品型号对比)  • SPI/QSPI/OSPI 接口外接多个 flash 和片外 RAM 高级外设接口和传感器 • 43 × GPIO 口  • 2 × 13 位 SAR ADC,多达 20 个通道  • 2 × 8 位 D/A 转换器  • 14 × 电容式传感 GPIO  • 4 × SPI  • 1 × I2S  • 2 × I2C  • 2 × UART  • RMT (TX/RX)  • LED PWM 控制器,多达 8 个通道 • 1 × 全速 USB OTG  • 1 × 温度传感器  • 1 × DVP 8/16 camera 接口,与 I2S 共用一套硬 件资源  • 1 × LCD 接口(8 位串口 RGB/8080/6800),与 SPI2 共用一套硬件资源  • 1 × LCD 接口(8/16/24 位并口),与 I2S 共用 一套硬件资源  • 1 × TWAI® 控制器,兼容 ISO11898-1(CAN 规 范 2.0) 低功耗管理 • 电源管理单元  • 超低功耗协处理器 (ULP): – ULP-RISC-V 协处理器 – ULP-FSM 协处理器 安全机制 • 安全启动  • Flash 加密 • 4096 位 OTP,用户可用的高达 1792 位  • 加密硬件加速器:  – AES-128/192/256 (FIPS PUB 197)  – Hash (FIPS PUB 180-4) – RSA  – 随机数生成器 (RNG)  – HMAC  – 数字签名 应用(部分举例) • 通用低功耗 IoT 传感器 Hub  • 通用低功耗 IoT 数据记录器  • 摄像头视频流传输  • OTT 电视盒/机顶盒设备  • USB 设备  • 语音识别  • 图像识别  • Mesh 网络  • 家庭自动化  – 智能照明  – 智能插座  – 智能门锁  • 智慧楼宇  – 照明控制  – 能耗监测  • 工业自动化  – 工业无线控制  – 工业机器人  • 智慧农业  – 智能温室大棚  – 智能灌溉  – 农业机器人 • 音频设备  – 网络音乐播放器  – 音频流媒体设备  – 网络广播  • 健康/医疗/看护  – 健康监测  – 婴儿监控器  • Wi-Fi 玩具  – 遥控玩具  – 距离感应玩具  – 早教机  • 可穿戴电子产品  – 智能手表  – 智能手环  • 零售 & 餐饮  – POS 系统  – 服务机器人  • 触摸感应交互  – 防水功能  – 距离感应  – 滑条、滚轮设计 1.产品型号对比 1.1ESP32-S2 系列芯片命名 图 2: ESP32-S2 系列芯片命名 1.2ESP32-S2 系列芯片对比 表 1: ESP32-S2 系列芯片对比 2.管脚定义 2.1管脚布局 图 3: ESP32-S2 系列芯片管脚布局(俯视图) 2.2管脚描述 表 2: 管脚描述 说明:  • P:电源管脚;I:输入;O:输出;T:可以被设置为高阻。  • ESP32-S2FH2、ESP32-S2FH4 和 ESP32-S2FN4R2 中的内置 flash 端口与芯片管脚对应关系为:  – CS# = SPICS0  – DI = SPID  – DO = SPIQ  – CLK = SPICLK  – WP# = SPIWP  – HOLD# = SPIHD  ESP32-S2FN4R2 和 ESP32-S2R2 的内置 PSRAM 端口与芯片管脚对应关系为:  – CE# = SPICS1  – SI/SIO0 = SPID  – SO/SIO1 = SPIQ  – SCLK = SPICLK  – SIO2 = SPIWP  – SIO3 = SPIHD  以上管脚不建议用于其他功能。  • ESP32-S2 系列芯片和外接 flash 芯片的数据端口连接关系请参考章节 3.4.2。  • GPIO33、GPIO34、GPIO35、GPIO36、GPIO37 的电源域默认为 VDD3P3_CPU,也可由软件配置为 VDD_SPI。  • 本表中管脚功能仅指部分固定设置,对于可通过 GPIO 矩阵输入输出的信号,不受本表的限制。有关 GPIO 交换矩阵的更多信息,请参考表 17。 2.3电源管理  2.4ESP32-S2 系列芯片的数字管脚可分为 4 种不同的电源域:  • VDD3P3_RTC_IO  • VDD3P3_CPU  • VDD_SPI  • VDD3P3_RTC  VDD3P3_RTC_IO 同时是 RTC 和 CPU 的输入电源。  VDD3P3_CPU 是 CPU 的输入电源。  VDD_SPI 可以作为输入电源或输出电源。VDD_SPI 与一个内置 LDO 的输出相连,该内置 LDO 的输入是 VDD3P3_RTC_IO。  VDD_SPI 可以与 VDD3P3_RTC_IO 连接在相同的电源上,这时内置 LDO 应该被关闭。  VDD3P3_RTC 是 RTC 模拟的输入电源。  ESP32-S2 系列芯片的数字电源管理如图 4 所示: 图 4: ESP32-S2 系列芯片数字电源管理 VDD_SPI 可选择由内置 LDO 供电(电压为 1.8 V)或由 VDD3P3_RTC_IO 通过电阻 RSP I 后供电(电压典型值为 3.3 V)。ESP32-S2FH2、ESP32-S2FH4、ESP32-S2FN4R2 和 ESP32-S2R2 由于内置 3.3 V SPI flash、PSRAM, VDD_SPI 必须由 VDD3P3_RTC_IO 通过电阻 RSP I 后供电。在 Deep-sleep 模式下,为了使 flash 漏电降到低, 可以通过软件关闭 VDD_SPI 电源。 关于 CHIP_PU 的说明:  下图为 ESP32-S2 系列芯片上电、复位时序图。各参数说明如表 3 所示。 图 5: ESP32-S2 系列芯片上电、复位时序图 表 3: ESP32-S2 系列芯片上电、复位时序图参数说明 2.5Strapping 管脚  2.6ESP32-S2 系列芯片共有 3 个 Strapping 管脚。  • GPIO0  • GPIO45  • GPIO46  软件可以读取寄存器“GPIO_STRAPPING”中这几个管脚 strapping 的值。  在芯片的系统复位(上电复位、RTC 看门狗复位、欠压复位、模拟超级看门狗 (analog super watchdog) 复位、晶 振时钟毛刺检测复位)过程中,Strapping 管脚对自己管脚上的电平采样并存储到锁存器中,锁存值为“0”或 “1”,并一直保持到芯片掉电或关闭。  GPIO0, GPIO45, GPIO46 默认连接内部上拉/下拉。如果这些管脚没有外部连接或者连接的外部线路处于高阻抗 状态,内部弱上拉/下拉将决定这几个管脚输入电平的默认值。  为改变 Strapping 的值,用户可以应用外部下拉/上拉电阻,或者应用主机 MCU 的 GPIO 控制 ESP32-S2 系列芯 片上电复位时的 Strapping 管脚电平。  复位放开后,Strapping 管脚和普通管脚功能相同。  配置 Strapping 管脚的详细启动模式请参阅表 4 。  表 4: Strapping 管脚 说明:  1.VDD_SPI 电压由 GPIO45 的 strapping 值或 eFuse 中 VDD_SPI_TIEH 决定。eFuse 中 VDD_SPI_FORCE 选择决 定方式:0:由 GPIO45 的 strapping 值决定;1:由 eFuse 中 VDD_SPI_TIEH 决定。  2.ESP32-S2FH2、ESP32-S2FH4、ESP32-S2FN4R2 和 ESP32-S2R2 由于内置 3.3 V SPI flash、PSRAM,VDD_SPI 必须配置成 3.3 V。  3. GPIO46 = 1 且 GPIO0 = 0 不可使用。  4. ROM Code 上电打印默认通过 U0TXD 管脚,可以由 eFuse 位控制切换到 DAC_1 管脚。  5. eFuse 的 UART_PRINT_C
乐鑫代理ESP32-S2 Wi-Fi MCU-esp32-s2价格-乐鑫esp32-s2低功耗芯片
产品描述

ESP32-S2系列芯片技术规格书 ESP32-S2FH2 ESP32-S2FH4 ESP32-S2FN4R2 ESP32-S2R2

包括: ESP32-S2 ESP32-S2FH2 ESP32-S2FH4 ESP32-S2FN4R2 ESP32-S2R2

ESP32-S2 系列是高集成度的低功耗 Wi-Fi 系统级芯 片 (SoC)、专为物联网 (IoT)、移动设备、可穿戴电子设 备、智能家居等各种应用而设计,具有行业的低功耗性能和射频性能。 芯片包括一个功能完备的 Wi-Fi 子系统,符合 IEEE 802.11b/g/n 协议。Wi-Fi 子系统集成了 Wi-Fi MAC、 Wi-Fi 射频和基带、天线开关、射频 Balun、功率放大 器、低噪声放大器等,提供了一个完整的 Wi-Fi 解决 方案。 ESP32-S2 系列芯片搭载 Xtensa® 32 位 LX7 单核处 理器,工作频率高达 240 MHz。芯片支持二次开发,无 需使用其他微控制器或处理器。 该系列芯片带有 320 KB SRAM,128 KB ROM,可通 过 SPI/QSPI/OSPI 接口外接 flash 和片外 RAM。 ESP32-S2 系列芯片支持多种低功耗工作状态,能够满足各种应用场景的功耗需求。芯片所特有的精细时 钟门控、动态电压时钟频率调节、可调节的射频功率 放大器的输出功率等特性,可以实现通信距离、数据 率和功耗之间的佳平衡。 ESP32-S2 系列芯片提供丰富的外设接口,包括 SPI, I2S,UART,I2C,LED PWM,LCD 接口,Camera 接 口,ADC,DAC,触摸传感器,温度传感器和多达 43 个 GPIO。此外,该系列芯片还包括一个全速 USB OnThe-Go (OTG) 接口,可以支持使用 USB 通信。 ESP32-S2 系列芯片具有多种特有的硬件安全机制。 硬件加密加速器支持 AES、SHA 和 RSA 算法。RNG、 HMAC 和数字签名 (Digital Signature) 模块提供了更多 安全性能。其他安全特性还包括 flash 加密和安全启 动 (secure boot) 签名验证等。完善的安全机制使芯片 能够满足严格的安全要求。

功能框图

ESP32-S2系列芯片功能图框

图 1: 功能框图

产品特性
Wi-Fi 
• 支持 IEEE 802.11 b/g/n 协议
• 在 2.4 GHz 频带支持 20 MHz 和 40 MHz 频宽
• 支持单频 1T1R 模式,数据速率高达 150 Mbps 
• 无线多媒体 (WMM) 
• 帧聚合 (TX/RX A-MPDU, RX A-MSDU) 
• 立即块确认 (Immediate Block ACK) 
• 分片和重组 (Fragmentation & defragmentation)

• Beacon 自动监测(硬件 TSF) 
• 4 × 虚拟 Wi-Fi 接口 
• 同时支持基础结构型网络 (Infrastructure BSS) Station 模式/SoftAP 模式/混杂模式 请注意 ESP32-S2 系列芯片在 Station 模式下扫 描时,SoftAP 信道会同时改变 
• 天线分集 
• 802.11mc FTM

CPU 和存储

• Xtensa® 32 位 LX7 单核处理器,主频高达 240 MHz 
• 128 KB ROM 
• 320 KB SRAM
• 16 KB RTC SRAM 
• 嵌入式 flash 和 PSRAM (不同型号有差异,详 见章节 1:产品型号对比) 
• SPI/QSPI/OSPI 接口外接多个 flash 和片外 RAM

高级外设接口和传感器

• 43 × GPIO 口 
• 2 × 13 位 SAR ADC,多达 20 个通道 
• 2 × 8 位 D/A 转换器 
• 14 × 电容式传感 GPIO 
• 4 × SPI 
• 1 × I2S 
• 2 × I2C 
• 2 × UART 
• RMT (TX/RX) 
• LED PWM 控制器,多达 8 个通道
• 1 × 全速 USB OTG 
• 1 × 温度传感器 
• 1 × DVP 8/16 camera 接口,与 I2S 共用一套硬 件资源 
• 1 × LCD 接口(8 位串口 RGB/8080/6800),与 SPI2 共用一套硬件资源 
• 1 × LCD 接口(8/16/24 位并口),与 I2S 共用 一套硬件资源 
• 1 × TWAI® 控制器,兼容 ISO11898-1(CAN 规 范 2.0)

低功耗管理

• 电源管理单元 
• 超低功耗协处理器 (ULP):
– ULP-RISC-V 协处理器
– ULP-FSM 协处理器

安全机制

• 安全启动 
• Flash 加密
• 4096 位 OTP,用户可用的高达 1792 位 
• 加密硬件加速器: 
– AES-128/192/256 (FIPS PUB 197) 
– Hash (FIPS PUB 180-4)
– RSA 
– 随机数生成器 (RNG) 
– HMAC 
– 数字签名

应用(部分举例)

• 通用低功耗 IoT 传感器 Hub 
• 通用低功耗 IoT 数据记录器 
• 摄像头视频流传输 
• OTT 电视盒/机顶盒设备 
• USB 设备 
• 语音识别 
• 图像识别 
• Mesh 网络 
• 家庭自动化 
– 智能照明 
– 智能插座 
– 智能门锁 
• 智慧楼宇 
– 照明控制 
– 能耗监测 
• 工业自动化 
– 工业无线控制 
– 工业机器人 
• 智慧农业 
– 智能温室大棚 
– 智能灌溉 
– 农业机器人

• 音频设备 
– 网络音乐播放器 
– 音频流媒体设备 
– 网络广播 
• 健康/医疗/看护 
– 健康监测 
– 婴儿监控器 
• Wi-Fi 玩具 
– 遥控玩具 
– 距离感应玩具 
– 早教机 
• 可穿戴电子产品 
– 智能手表 
– 智能手环 
• 零售 & 餐饮 
– POS 系统 
– 服务机器人 
• 触摸感应交互 
– 防水功能 
– 距离感应 
– 滑条、滚轮设计

1.产品型号对比
1.1ESP32-S2 系列芯片命名

ESP32-S2系列芯片命名

图 2: ESP32-S2 系列芯片命名


1.2ESP32-S2 系列芯片对比
表 1: ESP32-S2 系列芯片对比

ESP32-S2系列芯片对比

2.管脚定义
2.1管脚布局

ESP32-S2 系列芯片管脚布局

图 3: ESP32-S2 系列芯片管脚布局(俯视图)

2.2管脚描述
表 2: 管脚描述

ESP32-S2系列芯片管脚描述ESP32-S2系列芯片管脚描述2ESP32-S2系列芯片管脚描述3
说明: 
• P:电源管脚;I:输入;O:输出;T:可以被设置为高阻。 
• ESP32-S2FH2、ESP32-S2FH4 和 ESP32-S2FN4R2 中的内置 flash 端口与芯片管脚对应关系为: 
– CS# = SPICS0 
– DI = SPID 
– DO = SPIQ 
– CLK = SPICLK 
– WP# = SPIWP 
– HOLD# = SPIHD 
ESP32-S2FN4R2 和 ESP32-S2R2 的内置 PSRAM 端口与芯片管脚对应关系为: 
– CE# = SPICS1 
– SI/SIO0 = SPID 
– SO/SIO1 = SPIQ 
– SCLK = SPICLK 
– SIO2 = SPIWP 
– SIO3 = SPIHD 
以上管脚不建议用于其他功能。 
• ESP32-S2 系列芯片和外接 flash 芯片的数据端口连接关系请参考章节 3.4.2。 
• GPIO33、GPIO34、GPIO35、GPIO36、GPIO37 的电源域默认为 VDD3P3_CPU,也可由软件配置为 VDD_SPI。 
• 本表中管脚功能仅指部分固定设置,对于可通过 GPIO 矩阵输入输出的信号,不受本表的限制。有关 GPIO 交换矩阵的更多信息,请参考表 17。


2.3电源管理 
2.4ESP32-S2 系列芯片的数字管脚可分为 4 种不同的电源域: 
• VDD3P3_RTC_IO 
• VDD3P3_CPU 
• VDD_SPI 
• VDD3P3_RTC 
VDD3P3_RTC_IO 同时是 RTC 和 CPU 的输入电源。 
VDD3P3_CPU 是 CPU 的输入电源。 
VDD_SPI 可以作为输入电源或输出电源。VDD_SPI 与一个内置 LDO 的输出相连,该内置 LDO 的输入是 VDD3P3_RTC_IO。 
VDD_SPI 可以与 VDD3P3_RTC_IO 连接在相同的电源上,这时内置 LDO 应该被关闭。 
VDD3P3_RTC 是 RTC 模拟的输入电源。 
ESP32-S2 系列芯片的数字电源管理如图 4 所示:

ESP32-S2系列芯片数字电源管理

图 4: ESP32-S2 系列芯片数字电源管理

VDD_SPI 可选择由内置 LDO 供电(电压为 1.8 V)或由 VDD3P3_RTC_IO 通过电阻 RSP I 后供电(电压典型值为 3.3 V)。ESP32-S2FH2、ESP32-S2FH4、ESP32-S2FN4R2 和 ESP32-S2R2 由于内置 3.3 V SPI flash、PSRAM, VDD_SPI 必须由 VDD3P3_RTC_IO 通过电阻 RSP I 后供电。在 Deep-sleep 模式下,为了使 flash 漏电降到低, 可以通过软件关闭 VDD_SPI 电源。

关于 CHIP_PU 的说明: 
下图为 ESP32-S2 系列芯片上电、复位时序图。各参数说明如表 3 所示。

ESP32-S2系列芯片上电、复位时序图

图 5: ESP32-S2 系列芯片上电、复位时序图

ESP32-S2系列芯片上电、复位时序图参数说明

表 3: ESP32-S2 系列芯片上电、复位时序图参数说明

2.5Strapping 管脚 
2.6ESP32-S2 系列芯片共有 3 个 Strapping 管脚。 
• GPIO0 
• GPIO45 
• GPIO46 
软件可以读取寄存器“GPIO_STRAPPING”中这几个管脚 strapping 的值。 
在芯片的系统复位(上电复位、RTC 看门狗复位、欠压复位、模拟超级看门狗 (analog super watchdog) 复位、晶 振时钟毛刺检测复位)过程中,Strapping 管脚对自己管脚上的电平采样并存储到锁存器中,锁存值为“0”或 “1”,并一直保持到芯片掉电或关闭。 
GPIO0, GPIO45, GPIO46 默认连接内部上拉/下拉。如果这些管脚没有外部连接或者连接的外部线路处于高阻抗 状态,内部弱上拉/下拉将决定这几个管脚输入电平的默认值。 
为改变 Strapping 的值,用户可以应用外部下拉/上拉电阻,或者应用主机 MCU 的 GPIO 控制 ESP32-S2 系列芯 片上电复位时的 Strapping 管脚电平。 
复位放开后,Strapping 管脚和普通管脚功能相同。 
配置 Strapping 管脚的详细启动模式请参阅表 4 。 

表 4: Strapping 管脚

ESP32-S2系列芯片Strapping管脚1ESP32-S2系列芯片Strapping管脚2

说明: 
1.VDD_SPI 电压由 GPIO45 的 strapping 值或 eFuse 中 VDD_SPI_TIEH 决定。eFuse 中 VDD_SPI_FORCE 选择决 定方式:0:由 GPIO45 的 strapping 值决定;1:由 eFuse 中 VDD_SPI_TIEH 决定。 
2.ESP32-S2FH2、ESP32-S2FH4、ESP32-S2FN4R2 和 ESP32-S2R2 由于内置 3.3 V SPI flash、PSRAM,VDD_SPI 必须配置成 3.3 V。 
3. GPIO46 = 1 且 GPIO0 = 0 不可使用。 
4. ROM Code 上电打印默认通过 U0TXD 管脚,可以由 eFuse 位控制切换到 DAC_1 管脚。 
5. eFuse 的 UART_PRINT_CONTROL 为 
0 时,上电正常打印,不受 GPIO46 控制。 
1 时,GPIO46 为 0:上电正常打印;GPIO46 为 1:上电不打印。 
2 时,GPIO46 为 0:上电不打印;GPIO46 为 1:上电正常打印。 
3 时,上电不打印,不受 GPIO46 控制。

3.功能描述 
本章描述 ESP32-S2 系列芯片的各个功能模块。 
3.1CPU 和存储 
3.23.1.1 CPU
3.3
ESP32-S2 系列芯片搭载低功耗 Xtensa® LX7 32 位单核处理器,具有以下特性: 
• 7 级流水线架构,支持高达 240 MHz 的时钟频率 
• 16 位 / 24 位指令集提供高代码密度 
• 支持 32 位乘法器、32 位除法器 
• 非缓存 GPIO 指令 
• 支持 6 级 32 个中断 
• 支持 windowed ABI,64 个物理通用寄存器 
• 支持带 TRAX 压缩模块的 trace 功能,大 16 KB trace memory 
• 用于调试的 JTAG 接口

3.1.2 片上存储 
ESP32-S2 系列芯片片上存储包括:
• 128 KB ROM:用于程序启动和内核功能调用 
• 320 KB 片上 SRAM:用于数据和指令存储 
• RTC 快速存储器:为 8 KB SRAM,可被主 CPU 访问,在 Deep-sleep 模式下可以保存数据 
• RTC 慢速存储器:为 8 KB SRAM,可被主 CPU 或协处理器访问,在 Deep-sleep 模式下可以保存数据 
• 4 Kbit eFuse:其中 1792 位保留给用户使用,例如用于存储密钥和设备 ID 
• 嵌入式 flash 和 PSRAM:不同型号有区别,详见章节 1:产品型号对比

3.1.3 外部 Flash 和片外 RAM
ESP32-S2 系列芯片支持多个外部 QSPI/OSPI flash 和片外 RAM。该系列芯片还支持基于 XTS-AES 的硬件加解 密功能,从而保护开发者 flash 和片外 RAM 中的程序和数据。 
CPU 的指令空间、只读数据空间可以映射到外部 flash 和片外 RAM,CPU 的数据空间还可以映射到片外 RAM。 外部 flash 和片外 RAM 各可以大支持 1 GB。 
通过高速缓存,ESP32-S2 系列芯片一次多可以同时有: 
• 7.5 MB 的指令空间映射到 flash 与片外 RAM。如果实际使用指令空间大小超出 3.5 MB,则可能由于 CPU 的内部流水线特性导致 cache 性能略有降低。 
• 4 MB 的只读数据空间以 64 KB 的块映射到 flash 或片外 RAM,支持 8 位、16 位、32 位读取。 
• 10.5 MB 的数据空间以 64 KB 的块映射到片外 RAM。支持 8 位、16 位、32 位读写。10.5 MB 也可以是 只读数据空间,映射到 flash。
说明: 芯片启动完成后,软件可以自定义片外 RAM 或 flash 到 CPU 地址空间的映射。
3.1.4 存储器映射 
ESP32-S2 系列芯片的地址映射结构如图 6 所示。

ESP32-S2系列芯片地址映射结构
图 6: 地址映射结构
说明: 图中灰色背景标注的地址空间不可用。

3.1.5 Cache
ESP32-S2 系列芯片包含独立的指令和数据 cache,具有以下特性: 
• 可独立配置大小,8 KB 或 16 KB 
• 4 路组关联 
• 块大小支持 16 字节或 32 字节 
• 支持 pre-load 功能
• 支持 lock 功能 
• 支持关键字优先 (critical word first) 和提前重启 (early restart)

3.2 系统时钟 
3.2.1 CPU 时钟 CPU 时钟有 4 种可能的时钟源: 
• 外置 40 MHz 主晶振时钟 
• 内置 8 MHz 振荡器时钟 
• PLL 时钟 
• 音频 PLL 时钟 应用程序可以在外置主晶振、PLL 时钟、音频 PLL 时钟和内置 8 MHz 时钟中选择一个作为时钟源。根据不同的应用程序,被选择的时钟源直接或在分频之后驱动 CPU 时钟。

3.2.2 RTC 时钟 
RTC 慢速时钟有 3 种可能的时钟源: 
• 外置低速 (32 kHz) 晶振时钟 
• 内置 RC 振荡器(通常为 90 kHz,频率可调节) 
• 内置 31.25 kHz 时钟(由内置 8 MHz 振荡器时钟经 256 分频生成) RTC 快速时钟有 2 种可能的时钟源: 
• 外置主晶振的 4 分频时钟 
• 内置 8 MHz 振荡器的 N 分频时钟 RTC 慢速时钟应用于 RTC 计数器、RTC 看门狗和低功耗控制器;RTC 快速时钟应用于 RTC 外设和传感器控制器。


3.2.3 音频 PLL 时钟 
音频时钟由超低噪声小数分频 PLL 生成。

3.3模拟外设 
3.3.1模/数转换器 (ADC) 
ESP32-S2 系列芯片集成了 2 个 13 位 SAR ADC,共支持 20 个模拟通道输入。为了实现更低功耗,ESP32-S2 系 列芯片的 ULP 协处理器也可以在睡眠方式下测量电压,此时,可通过设置阈值或其他触发方式唤醒 CPU。 
多可配置 20 个管脚的 ADC,用于电压模数转换。 
有关 ADC 特性,请参考表 11。

3.3.2数/模转换器 (DAC) 
ESP32-S2 系列芯片有 2 个 8 位 DAC 通道,将 2 路数字信号分别转化为 2 个模拟电压信号输出,两个通道可以 独立地工作。DAC 电路由内置电阻串和 1 个缓冲器组成。DAC 的参考电压为 VDD3P3_RTC_IO。 

3.3.3温度传感器 
温度传感器生成一个随温度变化的电压。内部 ADC 将传感器电压转化为一个数字量。 温度传感器的测量范围为–20 °C 到 110 °C。温度传感器一般只适用于监测芯片内部温度的变化,该温度值会随 着微控制器时钟频率或 IO 负载的变化而变化。一般来讲,芯片内部温度会高于外部温度。 

3.3.4触摸传感器 
ESP32-S2 系列芯片提供了多达 14 个电容式传感 GPIO,能够探测由手指或其他物品直接接触或接近而产生的 电容差异。这种设计具有低噪声和高灵敏度的特点,可以用于支持使用相对较小的触摸板。设计中也可以使用 触摸板阵列以探测更大区域或更多点。ESP32-S2 系列芯片的触摸传感器同时还支持防水和数字滤波等功能来 进一步提高传感器的性能。表 5 列出了 14 个电容式传感 GPIO。


表 5: ESP32-S2 系列芯片上的电容式传感 GPIO

ESP32-S2系列芯片上的电容式传感GP10

3.4数字外设 
3.4.1通用输入/输出接口 (GPIO) 
ESP32-S2 系列芯片共有 43 个 GPIO 管脚,通过配置对应的寄存器,可以为这些管脚分配不同的功能。除作为 数字信号管脚外,部分 GPIO 管脚也可配置为模拟功能管脚,比如 ADC、DAC、touch 等管脚。 
除 GPIO46 为固定下拉外,其余 GPIO 都可以被配置为内部上拉/下拉,或者被设置为高阻。GPIO 配置为输入 管脚时,软件可通过读取寄存器获取其输入值。输入管脚也可经设置产生边缘触发或电平触发的 CPU 中断。除 GPIO46 只有输入功能外,其他数字 IO 管脚都是双向、非反相和三态的,包括带有三态控制的输入和输出缓冲 器。这些管脚可以复用作其他功能,例如 UART、SPI 等。当芯片低功耗运行时,GPIO 可设定为保持状态。

3.4.2 串行外设接口 (SPI)
ESP32-S2 系列芯片共有 4 个 SPI(SPI0,SPI1,SPI2 和 SPI3)。SPI0 和 SPI1 只可以配置成 SPI 存储器模式, SPI2 既可以配置成 SPI 存储器模式又可以配置成通用 SPI 模式;SPI3 只可以配置成通用 SPI 模式。

• SPI 存储器 (SPI Memory) 模式 
SPI 存储器模式(SPI0, SPI1 和 SPI2)用于连接 SPI 接口的外部存储器。SPI 存储器模式下数据传输长度 以字节为单位,高支持 8 线 STR/DDR 读写操作。时钟频率可配置, STR 模式下支持的高时钟频率为 80 MHz,DDR 模式下支持的高时钟频率为 40 MHz。 
• SPI2 通用 SPI (GP-SPI) 模式 
SPI2 作为通用 SPI 时,既可以配置成主机模式,又可以配置成从机模式。主机模式支持 2 线全双工和 1/2/4/8 线半双工通信;从机模式支持 2 线全双工和 1/2/4 线半双工通信。通用 SPI 的主机时钟频率可配 置;数据传输长度以字节为单位;时钟极性 (CPOL) 和相位 (CPHA) 可配置;可连接 DMA 通道。 
– 在 2 线全双工通信模式下, 主机的时钟高频率为 80 MHz,从机的时钟高频率为 40 MHz。支持 SPI 传输的 4 种时钟模式。 
– 在主机 1/2/4/8 线半双工通信模式下,时钟频率高为 80 MHz,支持 SPI 传输的 4 种时钟模式。 
– 在从机 1/2/4 线半双工通信模式下,时钟频率高为 40 MHz,也支持 SPI 传输的 4 种时钟模式。 
• SPI3 通用 SPI (GP-SPI) 模式 
SPI3 只能作为通用 SPI,既可以配置成主机模式,又可以配置成从机模式,具有 2 线全双工和 1 线半双工 通信功能。通用 SPI 的主机时钟频率可配置;数据传输长度以字节为单位;时钟极性 (CPOL) 和相位 (CPHA) 可配置;可连接 DMA 通道。 
– 在 2 线全双工通信模式下, 主机的时钟频率高为 80 MHz,从机的时钟频率高为 40 MHz。支持 SPI 传输的 4 种时钟模式。 
– 在 1 线半双工通信模式下,主机的时钟频率高为 80 MHz,支持 SPI 传输的 4 种时钟模式;从机的 时钟频率高为 40 MHz,也支持 SPI 传输的 4 种时钟模式。

通常情况下,ESP32-S2 系列芯片和外接 flash 芯片的数据端口连接关系是: SPI 8 线模式时: 
• SPID (SPID) = IO0 
• SPIQ (SPIQ) = IO1 
• SPIWP (SPIWP) = IO2 
• SPIHD (SPIHD) = IO3 
• GPIO33 = IO4 
• GPIO34 = IO5 
• GPIO35 = IO6 
• GPIO36 = IO7 
• GPIO37 = DQS 
SPI 4 线模式时: 
• SPID (SPID) = IO0 
• SPIQ (SPIQ) = IO1
• SPIWP (SPIWP) = IO2 
• SPIHD (SPIHD) = IO3
SPI 2 线模式时: 
• SPID (SPID) = IO0 
• SPIQ (SPIQ) = IO1 SPI 1 线模式时: 
• SPID (SPID) = DI 
• SPIQ (SPIQ) = DO 
• SPIWP (SPIWP) = WP# 
• SPIHD (SPIHD) = HOLD#

3.4.3 LCD 接口 
支持 8 位串口 RGB、8080、6800 接口,与 SPI2 共用一套硬件资源。支持 8/16/24 位并口接口 (8080),与 I2S 共用一套硬件资源。

3.4.4 通用异步收发器 (UART) 
ESP32-S2 系列芯片有 2 个 UART 接口,即 UART0、UART1,支持异步通信(RS232 和 RS485)和 IrDA,通 信速率可达到 5 Mbps。UART 支持 CTS 和 RTS 信号的硬件管理以及软件流控(XON 和 XOFF)。这两个接口均 可被 DMA 访问或者 CPU 直接访问。 

3.4.5 I2C 接口 
ESP32-S2 系列芯片有 2 个 I2C 总线接口,根据用户的配置,总线接口可以用作 I2C 主机或从机模式。I2C 接口 支持: 
• 标准模式 (100 Kbit/s) 
• 快速模式 (400 Kbit/s) 
• 速度高可达 5 MHz,但受制于 SDA 上拉强度 
• 7 位/10 位寻址模式 
• 双寻址模式 
用户可以配置指令寄存器来控制 I2C 接口,从而实现更多灵活的应用。

3.4.6 I2S 接口 
ESP32-S2 系列芯片有 1 个标准 I2S 接口,可以以主机或从机模式,在全双工或半双工模式下工作,并且可被配 置为 8/16/24/32 位的输入输出通道,支持频率从 10 kHz 到 40 MHz 的 BCK 时钟。 I2S 接口有专用的 DMA 控制器。支持 PCM 接口。 

3.4.7 Camera 接口 
ESP32-S2 系列芯片支持 8 位或 16 位 DVP 图像传感器接口,高时钟频率支持到 40 MHz,但与 I2S 接口共用 一套硬件资源。


3.4.8 红外遥控器 
红外遥控器支持 4 通道的红外发射和接收。通过程序控制脉冲波形,遥控器可以支持多种红外协议和单线协议。 4 个通道共用 1 个 256 × 32 位的存储模块来存放收发的波形。 

3.4.9 脉冲计数器 
脉冲计数器通过多种模式捕捉脉冲并对脉冲边沿计数。内部有 4 个通道,每个通道一次可同时捕捉 4 个信号。每 组 4 个输入包括 2 个脉冲信号和 2 个控制信号。 

3.4.10 LED PWM 
LED PWM 控制器可以用于生成 8 路独立的数字波形。它具有如下特性: 
• 波形的周期和占空比可配置,在信号周期为 1 ms 时,占空比精确度可达 18 位 
• 多种时钟源选择,包括:APB 总线时钟、外置主晶振时钟 
• 可在 Light-sleep 模式下工作 
• 支持硬件自动步进式地增加或减少占空比,可用于 LED RGB 彩色梯度发生器 

3.4.11 USB 1.1 OTG 接口 
ESP32-S2 系列芯片带有一个集成了收发器的全速 USB OTG 外设,符合 USB 1.1 规范。它具有以下特性: 
• 软件可配置的端点设置,支持挂起/恢复。 
• 支持动态 FIFO 大小 
• 会话请求协议 (SRP) 和主机协商协议 (HNP)。 
• 芯片内部已集成全速 USB PHY。 

3.4.12 TWAI® 控制器 
ESP32-S2 系列带有一个 TWAI® 控制器,具有如下特性: 
• 兼容 ISO 11898-1 协议(CAN 规范 2.0) 
• 支持标准格式(11-bit 标识符)和扩展格式(29-bit 标识符) 
• 支持 1 Kbit/s ~ 1 Mbit/s 位速率 
• 支持多种操作模式:正常模式、只听模式和自测模式 
• 64 字节接收 FIFO 
• 特殊发送:单次发送和自发自收 
• 接收滤波器(支持单滤波器和双滤波器模式) 
• 错误检测与处理:错误计数、错误报警限制可配置、错误代码捕捉和仲裁丢失捕捉 

3.5射频和 Wi-Fi 
ESP32-S2 系列芯片射频包含以下主要模块: 
• 2.4 GHz 接收器
• 2.4 GHz 发射器 
• 偏置 (Bias) 和线性稳压器 
• Balun 和收发切换器 
• 时钟生成器

3.5.12.4 GHz 接收器 
2.4 GHz 接收器将 2.4 GHz 射频信号解调为正交基带信号,并用 2 个高精度、高速的 ADC 将后者转为数字信 号。为了适应不同的信道情况,ESP32-S2 系列芯片集成了 RF 滤波器、自动增益控制 (AGC)、DC 偏移补偿电 路和基带滤波器。 

3.5.22.4 GHz 发射器 
2.4 GHz 发射器将正交基带信号调制为 2.4 GHz 射频信号,使用大功率互补金属氧化物半导体 (CMOS) 功率放 大器驱动天线。数字校准进一步改善了功率放大器的线性。 
为了抵消射频接收器的瑕疵,ESP32-S2 系列芯片还另增了校准措施,例如: 
• 载波泄露消除 
• I/Q 幅度/相位匹配 
• 基带非线性抑制 
• 射频非线性抑制 
• 天线匹配 
这些内置校准措施缩短了产品测试的成本和时间,并且不再需要测试设备。 

3.5.3时钟生成器 
时钟生成器为接收器和发射器生成 2.4 GHz 正交时钟信号,所有部件均集成于芯片上,包括电感、变容二极管、 环路滤波器、线性稳压器和分频器。 时钟生成器带有内置校准电路和自测电路。运用自主知识产权的优化算法,对正交时钟的相位和相位噪声进行 优化处理,使接收器和发射器都有好的性能表现。 

3.5.4Wi-Fi 射频和基带 
ESP32-S2 系列芯片 Wi-Fi 射频和基带支持以下特性: 
• 802.11b/g/n 
• 802.11n MCS0-7 支持 20 MHz 和 40 MHz 带宽 
• 802.11n MCS32 
• 802.11n 0.4 µs 保护间隔 
• 数据率高达 150 Mbps • STBC RX(单空间流) 
• 可调节的发射功率 
• 天线分集;
ESP32-S2 系列芯片支持基于外部射频开关的天线分集与选择。外部射频开关由一个或多个 GPIO 管脚控 制,用来选择合适的天线以减少信道衰落的影响。


3.5.5Wi-Fi MAC 
ESP32-S2 系列芯片完全遵循 802.11 b/g/n Wi-Fi MAC 协议栈,支持分布式控制功能 (DCF) 下的基本服务集 (BSS) STA 和 SoftAP 操作。支持通过小化主机交互来优化有效工作时长,以实现功耗管理。 
ESP32-S2 系列芯片 Wi-Fi MAC 自行支持的底层协议功能如下: 
• 4 × 虚拟 Wi-Fi 接口 
• 同时支持基础结构型网络 (Infrastructure BSS) Station 模式/SoftAP 模式/混杂模式 
• RTS 保护,CTS 保护,立即块确认 (Immediate Block ACK) 
• 分片和重组 (Fragmentation & defragmentation) 
• TX/RX A-MPDU, RX A-MSDU • TXOP • 无线多媒体 (WMM) 
• CCMP, TKIP, WAPI, WEP, BIP 
• 自动 Beacon 监测(硬件 TSF) 
• 802.11mc FTM 

3.5.6 联网特性 
乐鑫提供的固件支持 TCP/IP 联网、ESP-MESH 联网或其他 Wi-Fi 联网协议,同时也支持 TLS 1.0, 1.1, 1.2。 


3.6RTC 和低功耗管理 
3.6.1电源管理单元 (PMU) 
ESP32-S2 系列芯片采用了先进的电源管理技术,可以在不同的功耗模式之间切换。ESP32-S2 系列芯片支持的 功耗模式有: 
• Active 模式:CPU 和芯片射频处于工作状态。芯片可以接收、发射和侦听信号。 
• Modem-sleep 模式:CPU 可运行,时钟频率可配置。Wi-Fi 基带和射频关闭,但 Wi-Fi 可保持连接。 
• Light-sleep 模式:CPU 暂停运行。RTC 外设以及 ULP 协处理器运行。任何唤醒事件(MAC、主机、RTC 定时器或外部中断)都会唤醒芯片。Wi-Fi 可保持连接。 
• Deep-sleep 模式:CPU 和大部分外设都会掉电,只有 RTC 存储器和 RTC 外设处于工作状态。Wi-Fi 连接 数据存储在 RTC 中。ULP 协处理器可以工作。 
• Hibernation 模式:内置的 8 MHz 振荡器和 ULP 协处理器均被禁用。RTC 存储器的电源被切断。只有 1 个 位于低速时钟上的 RTC 时钟定时器和某些 RTC GPIO 在工作。RTC 时钟定时器或 RTC GPIO 可以将芯片 从 Hibernation 模式中唤醒。 
设备在不同的功耗模式下有不同的电流消耗,详情请见表 13。

3.6.2超低功耗协处理器 (ULP) 
ULP 处理器可以用于在正常工作模式下协助 CPU,也可以用于在系统休眠时代替 CPU 来执行任务。ULP 处理 器和 RTC 存储器在 Deep-sleep 模式下仍保持工作状态。因此,开发者可以将 ULP 协处理器的程序存放在 RTC 慢速存储器中,使其能够在 Deep-sleep 模式下访问 RTC GPIO、RTC 外设、RTC 定时器和内置传感器。 
ESP32-S2 系列芯片集成了两个协处理器,分别基于 RISC-V 指令集 (ULP-RISC-V) 和有限状态机 FSM 架构 (ULPFSM)。 ULP-RISC-V 协处理器具有以下特性: 
• 支持 RV32IMC 指令集 
• 32 个 32 位通用寄存器 
• 32 位乘除法器 • 支持中断 
• 支持被主 CPU、专用定时器、RTC GPIO 启动 ULP-FSM 协处理器具有以下特性: • 支持常用指令,包括运算、跳转、控制等 
• 支持传感器专用指令 • 支持被主 CPU、专用定时器、RTC GPIO 启动 注意:两个协处理器不能同时使用。 3.7 定时器 3.7.1 64 位通用定时器 ESP32-S2 系列芯片内置 4 个 64 位通用定时器,具有 16 位分频器和 64 位可自动重载的向上/向下计时器。 定时器具有如下功能: 
• 16 位时钟预分频器,分频系数为 1-65536 
• 64 位时基计数器可配置成递增或递减 
• 可读取时基计数器的实时值 
• 暂停和恢复时基计数器 
• 可配置的报警产生机制 
• 计数器值重新加载(报警时自动重新加载或软件控制的即时重新加载) 
• 电平触发中断和边沿触发中断机制 

3.7.2 看门狗定时器 
ESP32-S2 系列芯片中有三个看门狗定时器:两个定时器组中各一个(称作主系统看门狗定时器,缩写为 MWDT), RTC 模块中一个(称作 RTC 看门狗定时器,缩写为 RWDT)。看门狗在运行期间会经历四个阶段(除非看门狗 被按时喂狗或者处于关闭状态),每个阶段均可配置单独的超时时间和超时动作,其中除了 RWDT 支持四种超时动作外,其它两个看门狗仅支持三种。超时动作包括:中断、CPU 复位、内核复位和系统复位。其中,只有RWDT 能够触发系统复位,即复位芯片内部所有的数字电路,包括 RTC 和主系统。每个阶段的超时时间都可单 独设置。 
在引导加载 flash 固件期间,RWDT 和第一个 MWDT 会自动使能,以检测引导过程中发生的错误,并恢复运行。 
看门狗定时器具有如下特性: 
• 四个阶段,每个阶段都可配置超时时间。每阶段都可单独配置、使能和关闭。 • 如在某个阶段发生超时,则会采取三或四种(分别针对 MWDT 和 RWDT)动作中的一种(中断、CPU 复 位、内核复位和系统复位)。 
• 保护 32 位超时计数器,防止 RWDT 和 MWDT 的配置被无意间更改。 
• Flash 启动保护 如果在预定时间内 SPI flash 的引导过程没有完成,看门狗会重启整个主系统。

3.8 加密硬件加速器 
ESP32-S2 系列芯片配备硬件加速器,支持一些通用加密算法,比如 AES (FIPS PUB 197)、ECB/CBC/OFB/CFB/CTR (NIST SP 800-38A)、GCM (NIST SP 800-38D)、SHA (FIPS PUB 180-4)、RSA 和 ECC 等,还支持大数 乘法、大数模乘等独立运算,其中 RSA 和大数模乘运算大长度可达 4096 位,大数乘法的因子大长度可达 2048 位。

3.9 物理安全特性 
• 外部 flash 和片外 RAM 通过 AES-XTS 算法进行加密,加密算法使用的密钥无法被软件读写,因此用户的 应用程序代码与数据不会被非法获取。 
• 安全启动功能确保只启动已签名(具有 RSA-PSS 签名)的固件,此功能的可信度是根植于硬件逻辑。 
• HMAC 模块可以使用软件无法访问的安全密钥来生成用于身份验证或其他用途的 MAC 签名。 
• 数字签名模块可以使用软件无法访问的 RSA 密钥生成用于身份验证的 RSA 签名。

3.10 外设管脚分配
表 6: 外设和传感器管脚分配

ESP32-S2系列芯片外设和传感器管脚分配1

ESP32-S2系列芯片外设和传感器管脚分配2

ESP32-S2系列芯片外设和传感器管脚分配1

ESP32-S2系列芯片外设和传感器管脚分配4

说明: • GPIO46 只有输入功能,不能用于输出信号。

4. 电气特性
4.1 大额定值
超出大额定值可能导致器件永久性损坏。这只是强调的额定值,不涉及器件的功能性操作。

表 7: 大额定值

ESP32-S2系列芯片绝对最大额定值


4.2 建议工作条件
表 8: 建议工作条件

ESP32-S2系列芯片建议工作时间
说明: 1. 更多信息请参考章节 2.3 电源管理。 2. 在使用 VDD_SPI 为外设供电的使用场景中,VDD3P3_RTC_IO 还应满足外设的使用要求,详见表 9。 3. 使用单电源供电时,输出电流需要达到 500 mA 及以上。

4.3 VDD_SPI 输出特性
表 9: VDD_SPI 输出特性

ESP32-S2系列芯片VDD_SPI 输出特性
说明: 在实际使用情况下,当 VDD_SPI 为 3.3 V 输出模式的时候,VDD3P3_RTC_IO 需要考虑到 RSP I 的影响。比如在外接 3.3 V flash 的情况下: VDD3P3_RTC_IO > VDD_flash_min + I_flash_max*RSP I 
其中,VDD_flash_min 为 flash 的低工作电压,I_flash_max 为 flash 的大工作电流。 更多信息请参考章节 2.3 电源管理。

4.4 直流电气特性 (3.3 V, 25 °C)
表 10: 直流电气特性 (3.3 V, 25 °C)

ESP32-S2系列芯片直流电气特性

说明: 
1. VDD 是 I/O 的供电电源。 
2. VOH 和 VOL 为负载是高阻条件下的测试值。

4.5 ADC 特性
表 11: ADC 特性

ESP32-S2系列芯片ADC特性

说明: 
• 当测量值大于 3,000(电压值约为 2,450 mV),精度会比上表所述低。 
• 使用滤波器多次采样或计算平均值可以获得更好的 DNL 结果。

4.6 功耗特性 
下列功耗数据是基于 3.3 V 电源、25 °C 环境温度,在 RF 接口处完成的测试结果。所有发射数据均基于 100% 的占空比测得。

表 12: RF 功耗

ESP32-S2系列芯片RF功耗

说明: 
测量 RX 功耗数据时,外设处于关闭状态,CPU 处于 idle 状态。

表 13: 不同功耗模式下的功耗

ESP32-S2系列芯片不同功耗模式下的功耗

说明: 
• 测量 Modem-sleep 功耗数据时,CPU 处于工作状态,cache 处于 idle 状态。 • 在 Wi-Fi 开启的场景中,芯片会在 Active 和 Modem-sleep 模式之间切换,功耗也会在两种模式间变化。 
• Modem-sleep 模式下,CPU 频率自动变化,频率取决于 CPU 负载和使用的外设。 
• Deep-sleep 模式下,仅 ULP 协处理器处于工作状态时,可以操作 GPIO 及低功耗 I2C。 
• 当系统处于超低功耗传感器监测模式时,ULP 协处理器或传感器周期性工作。触摸传感器以 1% 占空比工作,系 统功耗典型值为 22 µA。

4.7 可靠性

表 14: 可靠性

ESP32-S2系列芯片可靠性
1. JEDEC 文档 JEP155 规定:500 V HBM 能够在标准 ESD 控制流程下安全生产。 2. JEDEC 文档 JEP157 规定:250 V CDM 能够在标准 ESD 控制流程下安全生产。

4.8 Wi-Fi 射频 
4.8.1 发射器性能规格
表 15: 发射器性能规格

ESP32-S2系列芯片发射器性能规格

4.8.2 接收器性能规格

表 16: 接收器性能规格

ESP32-S2系列芯片接收器性能规格1

ESP32-S2系列芯片接收器性能规格2

5.封装信息

ESP32-S2系列芯片QFN56 (7×7 mm) 封装图 7: QFN56 (7×7 mm) 封装
说明: 
• 从封装俯视图看,芯片管脚从 Pin 1 位置开始按逆时针方向进行编号; 
• 推荐 PCB 封装图源文件 (dxf) 可使用 Autodesk Viewer 查看; 
• 有关卷带、载盘和产品标签的信息,请参阅 《乐鑫芯片包装信息》。

扫二维码用手机看

视觉感知和24G毫米波雷达感应模块技术在路侧上面的应用

视觉感知和24G毫米波雷达感应模块技术在路侧上面的应用,何谓路侧感知?路侧感知是通过各种传感器,如视觉传感器、24G毫米波雷达感应模块、激光雷达,与边缘计算设备相结合,实时获取当前道路交通参与者和路况信息。利用车路协同技术,按照约定的通信协议和数据交互规范,实现车-人-路-云之间的信息交换和指令控制。路侧感能够在一时间向驾驶员提供道路状况的实时信息,并作出诸如行人、车辆碰撞预警、前方交通警告等有效决策。意外报警等;为有关交通部门提供监测和预测道路交通环境,如车流统计、车辆违停检测、区间速度等。 路侧感知可有效弥补车辆的感知盲区,为驾驶员提供及时预警,并在一定范围内为交通部门实现车辆协同调度,可有效改善城市道路交通拥堵状况。在车联网络侧智能基础设施建设的推动下,路侧感知将使道路更“智能化”。 这个市场有多大: 据《智能网联道路系统等级定义及解释报告(征求意见稿)》,可以看出,中国公路学会从交通基础设施信息化建设、从智能、自动化角度出发,结合应用场景、混合交通、主动安全系统等情况,将交通基础设施系统划分为I0(无信息/无智能/无自动化)和I5级(基于交通基础设施的完全自动驾驶),有六个等级。 但对于不同等级的公路,其信息化(数字化/网络化)、智能化、自动化程度不同,路侧感知设备的布设就会有所不同,计算方法也会有所不同,等级越高,投入成本越大,自动化程度就越高。 通过赛文交通网络的公布数据可以看出,2018年我国公路里程数表现为:(1)城市道路400,000多公里,50多万城市路口;(2)国道里程36.30万公里,国道里程37.22万公里,农村公路里程403.97万公里;(3)高速公路14.26万公里。根据初步估算,高分辨率摄像机、24G毫米波雷达感应模块、微波雷达、RFID等感知设备,平均在高速公路/省际干线10万/公里,感知设备市场规模达到880亿;城市路口平均20万/每秒,城市路口平均20万个。同时,随着我国新基础设施建设的推进,公路里程数持续增长,路侧感知设备的市场份额日益增长。 路侧感知设备是车联网系统的核心组成部分,随着车联网通信平台的建设的完成,其所占的比例将逐年增加。 发展形势如何: 大规模建设5G通信平台。5G网络具有低延迟、高可靠性、高容量等特点,5G的商用使5G实现了车、路侧端的实时通讯。5G通信平台是车联网络侧的核心设备。现在华为、大唐、高新兴等集团公司都积极参与到5G通信平台的建设中,行业巨头公司的加入,无疑是看到了车联网络侧网侧的巨大商机。 云的超强计算能力: 云强大的存储能力、计算能力、安全可靠以及资源丰富度,能够在车载、路侧感知端有效处理交通数据信息,该系统能实时分析道路交通状况,并将处理后的交通数据传输到周边车辆及相关平台,重新调度现有车辆,优化配置交通状态。当前,腾讯、百度、阿里、华为、滴滴等行业巨头都在积极推进其云控平台的建设,优化汽车后端平台。 大规模地配置路基设备: 随着政府新基建的推进,我国在城市道路、高速公路上部署了大量的视频监控、雷达等设备,并开始形成规模。当前,我国正在全面推进5G通信平台和车联网后端平台的建设,政府也积极发展智慧交通,大力推进路侧智能基础设施建设。唯有将车端、云端和路端三方技术与设备相结合,实现“感知、通信、计算”三大功能。所以路侧感知是构建智能交通系统不可或缺的一环。现在,越来越多的传感器厂商和集成商,已经开始采用局路侧感知技术。 将来的道路在哪里: 开发适用于路侧感知网络的传感器。目前在路侧感知方案中,大多使用传统交通传感器,如卡口摄像机、交通摄像机、交通雷达等,甚至还有车载激光雷达和24G毫米波雷达感应模块。由于传统的交通或车载传感器在设计之初并不是为车侧感知量身定制,因此在某些核心指标,如探测范围,探测精度,时延等,都无法满足车路协同的标准要求。 路侧感知是车辆协作的核心系统,其感知数据的质量直接影响到各个场景应用的效果和可行性。由于缺少合适的路侧传感器,目前路侧感知尚未形成规模。根据车辆路径协作的实际情况和标准要求,研究开发具有针对性的地路侧传感器是当务之急,是推动路侧感知快速发展的重要手段。 较优的路侧感知方案: 目前路侧感知方案大多采用摄像机、激光雷达、24G毫米波雷达感应模块获取路面信息,通过网络汇集到边缘计算单元MEC进行数据融合与分析。根据RSU与智能网联汽车,通过计算整个道路交通参与者的信息,然后按约定的通信与交互标准传递到路侧车辆。但是这种类似强MEC方案,对路侧网络的质量要求很高,标定困难,系统时延,功耗和综合成本较高,且很难满足其需求。 怎样利用这些传感器的特性,使它们大限度地发挥作用;研究开发低成本、低功耗边缘计算设备是路侧感知中亟待解决的重要问题。
点击查看更多
19
2021-10

基于乐鑫方案深圳代理商ESP32-WROOM的物联网微平台乐鑫MINI系列模块

发布时间: : 2021-10--19
基于乐鑫方案深圳代理商ESP32-WROOM的物联网微平台乐鑫MINI系列模块,在巴西,物联网初创企业SiriNEOTechnologies发布了基于乐鑫ESP32-WROOM系列模块的物联网微平台JARMESP32。 SiriNEOTechnologies是一家在巴西成立的公司,致力于物联网连接,电信生态和数据分析。本公司基于乐鑫方案深圳代理商ESP32-WROOM系列模块推出JARMESP32物联网平台,专为需要快速连接和低功耗的项目设计。JARMESP32具有ESP32-WROOM系列模块的功能特性,支持Wi-Fi(802.11b/g/n)、经典蓝牙和低功耗蓝牙双模式、配置8MBFlash、64MbitSPIFlash及板载UFL天线等。 JARMESP32不像市场上其它的ESP32开发板,集成了大部分功能传感器,使用户可以轻松、快速地利用物联网感知系统平台。这样,JARMESP32就能为各种物联网系统提供多样化的解决方案,借助于扩展板、屏蔽板和无线模块(例如LoRaWAN、SIGFOX、GPRS和ZigBEE)。JARMESP32适合各种物联网应用场景,您是否已经迫不及待?利用JARMESP32快速创建你自己的IoT解决方案! 乐鑫方案深圳代理商MINI系列!乐鑫科技推出基于ESP32-S2F芯片的ESP32-S2-MINI系列模块,其中包括ESP32-S2-MINI-1和ESP32-S2-MINI-1U通用Wi-FiMCU模块。该产品具有强大的功能和丰富的外部接口,乐鑫方案深圳代理商是物联网、可穿戴电子设备以及智能家居等应用场景的理想选择。 SP32-S2-MINI-1采用PCB板载天线,ESP32-S2-MINI-1U采用IPEX天线,两个模块都配有4MBSPIFlash。ESP32-S2-MINI模块基于ESP32-S2FH4芯片设计。ESP32-S2FH4搭载Xtensa®32位LX7单核处理器,工作频率高达240MHz,具有低功耗协处理器,用来替代CPU执行不需要大量计算的任务,比如监视外设的状态变化,或者某些模拟量是否超过阀值等等。ESP32-S2FH4集成了丰富的外部接口,包括SPI.I2S.UART.I2C.LEDPWM.LCD接口.Camera接口.ADC.DAC.触控传感器.温度传感器,高可达43个GPIO。同时,它也提供了USBOn-The-Go(OTG)的全速度接口,让用户可以在任何时间和任何地方使用USB。 当前,FCC.CE和SRRC认证正在通过ESP32-S2-MINI-1和ESP32-S2-MINI-1,认证工作已经完成,届时,这两个模块将符合美国联邦通信委员会欧盟以及中国无线电管理委员会制定的健康.安全和环保标准。乐鑫方案深圳代理商ESP32-S2-MINI系列模块及相应的开发板将在十二月正式投入生产。乐鑫MINI系列产品将根据ESP32、ESP32-S3和ESP32-C3推出模块和开发板! 如需更多产品信息,请与乐鑫方案深圳代理商飞睿科技支持联系。如果需要购买样品,请直接点击购买。
查看详情 查看详情
18
2021-10

微波雷达安防传感器模块在监狱/赛事/军事训练场机场应用

发布时间: : 2021-10--18
微波雷达安防传感器模块在监狱/赛事/军事训练场机场应用,微波雷达安防传感器模块主要针对空中低小慢目标的侦察跟踪,采用先进的多普勒技术,具有超高的范围精度,可输出目标三坐标信息(选用测高阵面可以实现高度测量),该系统能同时对多个目标做出快速反应,并具有搜索转局部搜索功能,可以为您提供高质量且经济有效的户外保护探测解决方案。 微波雷达安防传感器模块通过天线发射高频电磁波并接收处理反射波,以此判断覆盖范围内物体的移动,给出相应电信号。用于对低空小慢目标和行人车辆进行探测,可用于警戒和目标显示,能实时、准确地给出目标的轨迹信息。 应用于监狱、军事基地等重点地区,对微型/小型民用无人机进行探测,警戒和目标指示,能正确地给出目标的方位、距离、高度和速度等轨迹信息。在监狱、展览馆、军事基地等重点场所,主要用来探测警报器和靶标,能正确地给出目标的方位、距离、高度和速度等航迹信息,并对多批目标进行处理。 1、监狱/拘留所 狱中、看守所属于保密的隐私区,同时又属于敏感区,而针对外面的入侵、偷拍、投送等行为则需要重点防范,根据所掌握的情况,我司雷达可以对管制区域进行扫描探测,发现和跟踪非法侵入人员,一时间上报目标方位信息。 2、赛事/会议 有些重大政治会议和大型体育活动在举行时,面对低空飞行器的干扰和偷拍,会对比赛现场人员、赛程/日程产生很大影响,我司雷达可在场馆周围布防,对此类飞行器进行探测跟踪和报告,以达到提前预警的效果。 3、机场 在民用机场和军事训练机场等地区,当有人员非法闯入时,一旦发生非法闯入,就会对人民的公共安全和国家信息安全造成极大的不利影响,我司微波雷达安防传感器模块在相关机场进行了大量的测试试验,曾经有成功布防户外非法入侵的案例。
查看详情 查看详情
18
2021-10

乐鑫一级代理商ESP32支持TensorFlowLiteMicro/ESP32免费流媒体服务

发布时间: : 2021-10--18
乐鑫一级代理商ESP32支持TensorFlowLiteMicro/ESP32免费流媒体服务,本论文将以ESP-EYE开发板为例,说明TensorFlowLiteMicro如何在ESP32上运行。 八月二十八日,TensorFlow在官方博客上宣布TensorFlowLiteMicro支持乐鑫一级代理商ESP32。 下面是博客原文: 目前,ESP32已广泛用于智能家庭以及无线连接设备和工程中,该系统可以连接各种传感器和执行器,以实现对环境的感知与响应。当在ESP32上运行TensorFlowLiteMicro时,本地推断引发的各种用例场景都会出现。乐鑫一级代理商ESP32采用双核处理器,并具备出色的功能,极大地减少了运行TFMicro繁琐的工作。Wi-Fi回传可以帮助用户进行远程部署,并基于做出的推论触发动作。 脸部监控/智能门铃摄像头的例子 本文把大家熟悉的人脸检测实例改造成一个智能门铃,并用ESP-EYE开发板作演示。值得注意的是,这个例子使用了人脸检测技术(在摄像机前检测人脸),而不是身份识别。 ESP-EYE开发板包括ESP32 Wi-Fi/Bluetooth MCU和2MP摄像头。   对于这个例子,一旦开发板上的摄象机检测到一个人靠近设备,它将自动发送一条通知邮件。 行动指南: 1、准备乐鑫一级代理商ESP-EYE,此外,还需要准备一条USB转接口的数据线,以使ESP-EYE能够与Windows/Linux/macOS系统的主机相连。 2、codeBase:https://github.com/espressif/tensorflow/ 3、安装开发主机:通过ESP32的交叉编译工具链和实用程序建立开发主机,并根据ESP-IDF的入门指南建立工具链和ESP-IDF。 4、生成案例make -f tensorflow/lite/micro/tools/make/Makefile TARGET=esp generate_doorbell_camera_esp_project,使用以上命令。 5、存取示例项目目录:cd tensorflow/lite/micro/tools/make/gen/esp_xtensa-esp32/prj/doorbell_camera/esp-idf。 6、通过下面的命令克隆乐鑫一级代理商ESP32摄像机组件:$ git clone https://github.com/espressif/esp32-camera components/esp32-camera。 7、将照相机和邮箱地址配置为:idf.py menuconfig。 8、在CameraPins和SMTP中,选择cameradetails和emaildetails。 9、构建示例:idf.pybuild,trade。使用下面的命令idf.py --port/dev/ttyUSB0 flash monitor,来刷新和运行该程序。 现在,无论何时检测到人脸,程序都将一封电子邮件发送给已配置好的邮箱地址。 做完门铃声摄像头示例之后,您也可以试用TFMicro的其他应用项目,比如hello_world和micro_speech。 乐鑫一级代理商ESP32是一个强大的MCU,具有240MHz的时钟频率。仅使用一个CPU内核,一秒之内就可以完成(大约700ms)检测(我们还会进一步优化性能以缩短时间),因此可以让另一个内核自由地处理应用中的其他任务。 ESPFLIX:一个基于乐鑫一级代理商ESP32的免费流媒体服务。 著名创造者Rossum告诉我们如何构建一个开放源码机顶盒,以及如何让它访问基于ESP32的视频流服务。 近日,著名创客Rossum在博客上展示了他创建的ESPEFLIX,它以ArduinoIDE框架为基础,可以在乐鑫一级代理商ESP32上正常工作。Hackaday网站作者LewinDay认为:“目前,如果您的电视不能直接使用流媒体服务,那么这样你就有很多选择了,比如用AppleTV,Chromecast或者Android机顶盒来播放你想看的东西。但是如果你仍然有复古的情结,ESPFLIX将会成为你的不二选择。” ESPFLIX是Rossum基于以前的ESP_8_BIT项目而开发的,它的示意图很简单: ESPFLIX还具备NTSC/PAL彩色合成视频输出功能,增加视频、音频编解码器及AWS流媒体服务,这样,就可以创建一种类似于Netflix(一家会员订阅的流媒体播放平台)的开源平台。ESPFLIX的视频输出采用MPEG1标准,分辨率352×192;通过SBC音频编解码器输出。SBC一开始主要用于蓝牙设备,而在这个项目中,由于它有非常小的采样缓冲,所以很容易用乐鑫一级代理商ESP32的RAM解码。由ESP32产生合成视频,输出视频。 ESPFLIX视频库现在包含了AmazonWebServices上的非版权资源。Rossum在充分发挥AWSCloudfront快速内容发布网络的优势的同时,它对ESP32的RAM进行了巧妙的利用,使得ESPFLIX的视频流服务在全球范围内得以实现。 就像Rossum说的:乐鑫一级代理商ESP32是一款精密和功能强大的设备。用它,你就能开发一台比一个遥控器还便宜的机顶盒!在获得与AWS平台相似的视频流服务时,用户只需要花很少的时间和费用。
查看详情 查看详情
16
2021-10

5.8g微波雷达安防传感器边境/飞机场周边/油田/库房应用

发布时间: : 2021-10--16
5.8g微波雷达安防传感器边境/飞机场周边/油田/库房应用,地面5.8g微波雷达安防传感器主要用于地面目标的探测跟踪,其模块架设简单,可适应各种极端气候环境,采用先进的全数字系统,具有极高的范围准确度,使其在杂乱的环境中表现优异,可以一时间报告正确的目标位置和速度信息,同时可以在重点监测区域内实现设置警戒线,提供高质量、高性价比的周边防护检测解决方案。 5.8g微波雷达安防传感器安防监视雷达可以对行人、车辆等地面活动目标进行重点监测,预警和目标指示,为监控系统提供实时、正确、连续的地面情报和目标方位信息。 1、边境 该雷达可对西北、东北、西南、东南边界等边区非法入境和敏感地区的非法入境人员进行控制,雷达可自动扫描跟踪、报警,减轻哨兵工作负担。 2、飞机场周边 民用机场附近禁止人员非法侵入和活动,以免引起意外事故,我司5.8g微波雷达安防传感器能及时对周边机场周边的人员和车辆进行监控预警,及时报警处理。 3、油田 面对偷油问题仍然十分严重的油田,我司5.8g微波雷达安防传感器可以在一时间发现、追踪、报告受控制油区范围内非法目标,杜绝偷油行为。 4、库房 军用仓库与民用仓库采用5.8g微波雷达安防传感器跟传统探测相比,能更早、更及时、更主动地发现违法者,减少财产损失。
查看详情 查看详情
16
2021-10

乐鑫科技WIFI云模组推出独有的"云模块+云平台+微信小程序"标准企业端到端智能解决方案

发布时间: : 2021-10--16
乐鑫科技WIFI云模组推出独有的"云模块+云平台+微信小程序"标准企业端到端智能解决方案,以腾讯云物联网开发平台IoTExplorer为基础,以及腾讯腾讯微信小程序的服务能力为基础,乐鑫科技推出了“乐鑫云模组+腾讯云平台+腾讯连连微信小程序”解决方案,涵盖智能照明、智能电工、智慧建筑、智能家居等多个领域。 新浪微博小程序开启了微信生态的服务功能,加快了IoT产品的落地。通过小程序,用户可迅速完成配网、绑定、控制等操作,并实现不同厂商、不同协议硬件产品的一键式运算。 通过腾讯云IoT-乐鑫技术的智能照明方案,结合乐鑫ESP-WIFI-MESH、ESP-NOW等无线通信协议,可提供出色的语音控制、遥控、智能调节色光温度、定制场景、OTA升级,切换控制,传感器自动关联控制等功能。与此同时,产品安全性能全面升级,提供基于RSA-3072算法的安全引导.基于AES-XTS-256算法的Flash加密,有效抵抗物理故障注入攻击等。 由腾讯云IoT和乐鑫科技共同推出的端到端智能方案是一套完整的解决方案,包含下面几个常见的使用场景,用户可以根据它进行二次开发,快速实现智能灯、智能开关、智能传感器等产品: 1、乐鑫科技WiFi云模组智能灯长供电方案:支持颜色、色温、亮度等多种远距离调节。除了灯饰类产品,用户还可根据本方案开发智能插座、智能空调等长电源设备; 2、智能型开关超低功率方案:一般情况下,设备只在唤醒时工作,将其送到云上,控制智能设备。根据该系统,用户可开发Wi-Fi遥控、智能体脂秤等设备; 3、乐鑫科技WiFi云模组智能型传感器低功耗方案:通过传感器数据控制智能灯等智能设备。企业界用户可在此基础上开发智能温湿度传感器、智能人体检测及其他电池供电设备。 另外,基于微信生态,腾讯用户可以在企业间实现产品间的联系和链接贯通,提升用户对连结设备的连动需求。 今后,乐鑫科技将与更多的合作伙伴一道,共同构建更多的产品和解决方案,进一步降低物联网开发的难度,帮助客户快速构建智能产品,加速产业智能化。
查看详情 查看详情
上一页
1
2
...
35

地址:深圳市宝安区西乡街道麻布社区宝安互联网产业基地A区6栋7栋7706

邮箱:Sales@ferry-semi. com

版权所有©2020  深圳市飞睿科技有限公司  粤ICP备2020098907号    飞睿科技微波雷达wifi模块网站地图