这是描述信息
兆易创新GD32-GigaDevice-兆易创新代理

兆易创新GD32E103CBT6-GD32 ARM Cortex-M4 Microcontroller

兆易创新GD32E103CBT6-GD32 ARM Cortex-M4 Microcontroller GigaDevice Semiconductor Inc. GD32E103xx ARM® Cortex™-M4 32-bit MCU Datasheet General description The GD32E103xx device belongs to the connectivity line of GD32 MCU Family. It is a 32-bit general-purpose microcontroller based on the ARM® Cortex™-M4 RISC core with best cost- performance ratio in terms of enhanced processing capacity, reduced power consumption and peripheral set. The Cortex™-M4 core features implements a full set of DSP instructions to address digital signal control markets that demand an efficient, easy-to-use blend of control and signal processing capabilities. It also provides powerful trace technology for enhanced application security and advanced debug support. The GD32E103xx device incorporates the ARM® Cortex®-M4 32-bit processor core operating at 120 MHz frequency with Flash accesses zero wait states to obtain maximum efficiency. It provides up to 128 KB on-chip Flash memory and 32 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer up to two 12-bit 3 MSPS ADCs, two 12-bit DACs, up to ten general 16-bit timers, two 16-bit PWM advanced timers, and two 16-bit basic timers, as well as standard and advanced communication interfaces: up to three SPIs, two I2Cs, three USARTs and two UARTs, two I2Ss, an USBFS and two CANs. The device operates from 1.71 to 3.6 V power supply and available in –40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications. The above features make GD32E103xx devices suitable for a wide range of interconnection and advanced applications, especially in areas such as industrial control, motor drives, consumer and handheld equipment, human machine interface, security and alarm systems, POS, automotive navigation, IoT and so on. Device information Table 2-1. GD32E103xx devices features and peripheral list   Part Number GD32E103xx   T8 TB C8 CB R8 RB V8 VB Flash (KB) 64 128 64 128 64 128 64 128 SRAM (KB) 20 32 20 32 20 32 20 32 Timers General timer(16- bit) 4 (1-4) 4 (1-4) 10 (1-4,8-13) 10 (1-4,8-13) 10 (1-4,8-13) 10 (1-4,8-13) 10 (1-4,8-13) 10 (1-4,8-13)   Advanced timer(16-bit) 1 (0) 1 (0) 1 (0) 1 (0) 2 (0,7) 2 (0,7) 2 (0,7) 2 (0,7)   SysTick 1 1 1 1 1 1 1 1     Basic timer(16-bit) 2 (5,6) 2 (5,6) 2 (5,6) 2 (5,6) 2 (5,6) 2 (5,6) 2 (5,6) 2 (5,6)   Watchdog 2 2 2 2 2 2 2 2   RTC 1 1 1 1 1 1 1 1 Connectivity   USART 2 (0-1) 2 (0-1) 3 (0-2) 3 (0-2) 3 (0-2) 3 (0-2) 3 (0-2) 3 (0-2)     UART 0 0 0 0 2 (3-4) 2 (3-4) 2 (3-4) 2 (3-4)     I2C 1 (0) 1 (0) 2 (0-1) 2 (0-1) 2 (0-1) 2 (0-1) 2 (0-1) 2 (0-1)     SPI/I2S 1/0 (0/-) 1/0 (0/-) 3/2 (0-2)/(1-2) 3/2 (0-2)/(1-2) 3/2 (0-2)/(1-2) 3/2 (0-2)/(1-2) 3/2 (0-2)/(1-2) 3/2 (0-2)/(1-2)   CAN 2xFD 2xFD 2xFD 2xFD 2xFD 2xFD 2xFD 2xFD   USBFS 1 1 1 1 1 1 1 1 GPIO 26 26 37 37
兆易创新GD32-GigaDevice-兆易创新代理
产品描述

兆易创新GD32E103CBT6-GD32 ARM Cortex-M4 Microcontroller

GigaDevice Semiconductor Inc.
GD32E103xx
ARM® Cortex™-M4 32-bit MCU
Datasheet

General description

The GD32E103xx device belongs to the connectivity line of GD32 MCU Family. It is a 32-bit general-purpose microcontroller based on the ARM® Cortex™-M4 RISC core with best cost- performance ratio in terms of enhanced processing capacity, reduced power consumption and peripheral set. The Cortex™-M4 core features implements a full set of DSP instructions to address digital signal control markets that demand an efficient, easy-to-use blend of control and signal processing capabilities. It also provides powerful trace technology for enhanced application security and advanced debug support.
The GD32E103xx device incorporates the ARM® Cortex®-M4 32-bit processor core operating at 120 MHz frequency with Flash accesses zero wait states to obtain maximum efficiency. It provides up to 128 KB on-chip Flash memory and 32 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer up to two 12-bit 3 MSPS ADCs, two 12-bit DACs, up to ten general 16-bit timers, two 16-bit PWM advanced timers, and two 16-bit basic timers, as well as standard and advanced communication interfaces: up to three SPIs, two I2Cs, three USARTs and two UARTs, two I2Ss, an USBFS and two CANs.
The device operates from 1.71 to 3.6 V power supply and available in –40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications.
The above features make GD32E103xx devices suitable for a wide range of interconnection and advanced applications, especially in areas such as industrial control, motor drives, consumer and handheld equipment, human machine interface, security and alarm systems, POS, automotive navigation, IoT and so on.

Device information

Table 2-1. GD32E103xx devices features and peripheral list

 

Part Number

GD32E103xx

 

T8

TB

C8

CB

R8

RB

V8

VB

Flash (KB)

64

128

64

128

64

128

64

128

SRAM (KB)

20

32

20

32

20

32

20

32

Timers

General timer(16-

bit)

4

(1-4)

4

(1-4)

10

(1-4,8-13)

10

(1-4,8-13)

10

(1-4,8-13)

10

(1-4,8-13)

10

(1-4,8-13)

10

(1-4,8-13)

 

Advanced

timer(16-bit)

1

(0)

1

(0)

1

(0)

1

(0)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

 

SysTick

1

1

1

1

1

1

1

1

 

 

Basic timer(16-bit)

2

(5,6)

2

(5,6)

2

(5,6)

2

(5,6)

2

(5,6)

2

(5,6)

2

(5,6)

2

(5,6)

 

Watchdog

2

2

2

2

2

2

2

2

 

RTC

1

1

1

1

1

1

1

1

Connectivity

 

USART

2

(0-1)

2

(0-1)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

 

 

UART

0

0

0

0

2

(3-4)

2

(3-4)

2

(3-4)

2

(3-4)

 

 

I2C

1

(0)

1

(0)

2

(0-1)

2

(0-1)

2

(0-1)

2

(0-1)

2

(0-1)

2

(0-1)

 

 

SPI/I2S

1/0

(0/-)

1/0

(0/-)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

 

CAN

2xFD

2xFD

2xFD

2xFD

2xFD

2xFD

2xFD

2xFD

 

USBFS

1

1

1

1

1

1

1

1

GPIO

26

26

37

37

51

51

80

80

EXMC

0

0

0

0

0

0

1

1

EXTI

16

16

16

16

16

16

16

16

ADC

Units

2

2

2

2

2

2

2

2

 

Channels

10

10

10

10

16

16

16

16

DAC

2

2

2

2

2

2

2

2

Package

QFN36

LQFP48

LQFP64

LQFP100

Memory map

Table 2-2. GD32E103xx memory map

Pre-defined

regions

 

Bus

 

Address

 

Peripherals

External device

 

 

 

AHB3

0xA000 0000 - 0xA000 0FFF

EXMC - SWREG

 

 

External RAM

 

0x9000 0000 - 0x9FFF FFFF

Reserved

 

 

0x7000 0000 - 0x8FFF FFFF

Reserved

 

 

 

0x6000 0000 - 0x63FF FFFF

EXMC -

NOR/PSRAM/SRAM

 

 

 

 

 

 

 

 

Peripheral

 

 

 

 

 

 

 

 

AHB1

0x5000 0000 - 0x5003 FFFF

USBFS

 

 

0x4008 0000 - 0x4FFF FFFF

Reserved

 

 

0x4004 0000 - 0x4007 FFFF

Reserved

 

 

0x4002 BC00 - 0x4003 FFFF

Reserved

 

 

0x4002 B000 - 0x4002 BBFF

Reserved

 

 

0x4002 A000 - 0x4002 AFFF

Reserved

 

 

0x4002 8000 - 0x4002 9FFF

Reserved

 

 

0x4002 6800 - 0x4002 7FFF

Reserved

 

 

0x4002 6400 - 0x4002 67FF

Reserved

 

 

0x4002 6000 - 0x4002 63FF

Reserved

 

 

0x4002 5000 - 0x4002 5FFF

Reserved

 

 

0x4002 4000 - 0x4002 4FFF

Reserved

 

 

0x4002 3C00 - 0x4002 3FFF

Reserved

 

Pre-defined

regions

 

Bus

 

Address

 

 

0x4002 3800 - 0x4002 3BFF

 

 

0x4002 3400 - 0x4002 37FF

 

 

0x4002 3000 - 0x4002 33FF

 

 

0x4002 2C00 - 0x4002 2FFF

 

 

0x4002 2800 - 0x4002 2BFF

 

 

0x4002 2400 - 0x4002 27FF

 

 

0x4002 2000 - 0x4002 23FF

 

 

0x4002 1C00 - 0x4002 1FFF

 

 

0x4002 1800 - 0x4002 1BFF

 

 

0x4002 1400 - 0x4002 17FF

 

 

0x4002 1000 - 0x4002 13FF

 

 

0x4002 0C00 - 0x4002 0FFF

 

 

0x4002 0800 - 0x4002 0BFF

 

 

0x4002 0400 - 0x4002 07FF

 

 

0x4002 0000 - 0x4002 03FF

 

 

0x4001 8400 - 0x4001 FFFF

 

 

0x4001 8000 - 0x4001 83FF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APB2

0x4001 7C00 - 0x4001 7FFF

 

 

0x4001 7800 - 0x4001 7BFF

 

 

0x4001 7400 - 0x4001 77FF

 

 

0x4001 7000 - 0x4001 73FF

 

 

0x4001 6C00 - 0x4001 6FFF

 

 

0x4001 6800 - 0x4001 6BFF

 

 

0x4001 5C00 - 0x4001 67FF

 

 

0x4001 5800 - 0x4001 5BFF

 

 

0x4001 5400 - 0x4001 57FF

 

 

0x4001 5000 - 0x4001 53FF

 

 

0x4001 4C00 - 0x4001 4FFF

 

 

0x4001 4800 - 0x4001 4BFF

 

 

0x4001 4400 - 0x4001 47FF

 

 

0x4001 4000 - 0x4001 43FF

 

 

0x4001 3C00 - 0x4001 3FFF

 

 

0x4001 3800 - 0x4001 3BFF

 

 

0x4001 3400 - 0x4001 37FF

 

 

0x4001 3000 - 0x4001 33FF

 

 

0x4001 2C00 - 0x4001 2FFF

 

 

0x4001 2800 - 0x4001 2BFF

 

 

0x4001 2400 - 0x4001 27FF

 

 

0x4001 2000 - 0x4001 23FF

 

Pre-defined

regions

 

Bus

 

Address

 

Peripherals

 

 

0x4001 1C00 - 0x4001 1FFF

Reserved

 

 

0x4001 1800 - 0x4001 1BFF

GPIOE

 

 

0x4001 1400 - 0x4001 17FF

GPIOD

 

 

0x4001 1000 - 0x4001 13FF

GPIOC

 

 

0x4001 0C00 - 0x4001 0FFF

GPIOB

 

 

0x4001 0800 - 0x4001 0BFF

GPIOA

 

 

0x4001 0400 - 0x4001 07FF

EXTI

 

 

0x4001 0000 - 0x4001 03FF

AFIO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APB1

0x4000 CC00 - 0x4000 FFFF

Reserved

 

 

0x4000 C800 - 0x4000 CBFF

CTC

 

 

0x4000 C400 - 0x4000 C7FF

Reserved

 

 

0x4000 C000 - 0x4000 C3FF

Reserved

 

 

0x4000 8000 - 0x4000 BFFF

Reserved

 

 

0x4000 7C00 - 0x4000 7FFF

Reserved

 

 

0x4000 7800 - 0x4000 7BFF

Reserved

 

 

0x4000 7400 - 0x4000 77FF

DAC

 

 

0x4000 7000 - 0x4000 73FF

PMU

 

 

0x4000 6C00 - 0x4000 6FFF

BKP

 

 

0x4000 6800 - 0x4000 6BFF

CAN1

 

 

0x4000 6400 - 0x4000 67FF

CAN0

 

 

0x4000 6000 - 0x4000 63FF

CAN SRAM 1K bytes

 

 

0x4000 5C00 - 0x4000 5FFF

Reserved

 

 

0x4000 5800 - 0x4000 5BFF

I2C1

 

 

0x4000 5400 - 0x4000 57FF

I2C0

 

 

0x4000 5000 - 0x4000 53FF

UART4

 

 

0x4000 4C00 - 0x4000 4FFF

UART3

 

 

0x4000 4800 - 0x4000 4BFF

USART2

 

 

0x4000 4400 - 0x4000 47FF

USART1

 

 

0x4000 4000 - 0x4000 43FF

Reserved

 

 

0x4000 3C00 - 0x4000 3FFF

SPI2/I2S2

 

 

0x4000 3800 - 0x4000 3BFF

SPI1/I2S1

 

 

0x4000 3400 - 0x4000 37FF

Reserved

 

 

0x4000 3000 - 0x4000 33FF

FWDGT

 

 

0x4000 2C00 - 0x4000 2FFF

WWDGT

 

 

0x4000 2800 - 0x4000 2BFF

RTC

 

 

0x4000 2400 - 0x4000 27FF

Reserved

 

 

0x4000 2000 - 0x4000 23FF

TIMER13

 

 

0x4000 1C00 - 0x4000 1FFF

TIMER12

 

 

0x4000 1800 - 0x4000 1BFF

TIMER11

 

 

Pre-defined

regions

 

Bus

 

Address

 

Peripherals

 

 

0x4000 1400 - 0x4000 17FF

TIMER6

0x4000 1000 - 0x4000 13FF

TIMER5

0x4000 0C00 - 0x4000 0FFF

TIMER4

0x4000 0800 - 0x4000 0BFF

TIMER3

0x4000 0400 - 0x4000 07FF

TIMER2

0x4000 0000 - 0x4000 03FF

TIMER1

 

 

 

 

 

SRAM

 

 

 

 

 

AHB

0x2007 0000 - 0x3FFF FFFF

Reserved

0x2006 0000 - 0x2006 FFFF

Reserved

0x2003 0000 - 0x2005 FFFF

Reserved

0x2002 0000 - 0x2002 FFFF

Reserved

0x2001 C000 - 0x2001 FFFF

 

 

SRAM

0x2001 8000 - 0x2001 BFFF

0x2000 5000 - 0x2001 7FFF

0x2000 0000 - 0x2000 4FFF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Code

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AHB

0x1FFF F810 - 0x1FFF FFFF

Reserved

0x1FFF F800 - 0x1FFF F80F

Option Bytes

0x1FFF F000 - 0x1FFF F7FF

 

 

Boot loader

0x1FFF C010 - 0x1FFF EFFF

0x1FFF C000 - 0x1FFF C00F

0x1FFF B000 - 0x1FFF BFFF

0x1FFF 7A10 - 0x1FFF AFFF

Reserved

0x1FFF 7800 - 0x1FFF 7A0F

Reserved

0x1FFF 0000 - 0x1FFF 77FF

Reserved

0x1FFE C010 - 0x1FFE FFFF

Reserved

0x1FFE C000 - 0x1FFE C00F

Reserved

0x1001 0000 - 0x1FFE BFFF

Reserved

0x1000 0000 - 0x1000 FFFF

Reserved

0x083C 0000 - 0x0FFF FFFF

Reserved

0x0830 0000 - 0x083B FFFF

Reserved

0x0810 0000 - 0x082F FFFF

 

Main Flash

0x0802 0000 - 0x080F FFFF

0x0800 0000 - 0x0801 FFFF

0x0030 0000 - 0x07FF FFFF

Reserved

0x0010 0000 - 0x002F FFFF

 

Aliased to Main Flash or Boot loader

0x0002 0000 - 0x000F FFFF

0x0000 0000 - 0x0001 FFFF

 

GD32E103Vx LQFP100 pin definitions

Table 2-3. GD32E103Vx LQFP100 pin definitions

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

PE2

 

1

 

I/O

 

5VT

Default: PE2

Alternate: TRACECK, EXMC_A23

 

PE3

 

2

 

I/O

 

5VT

Default: PE3

Alternate: TRACED0, EXMC_A19

 

PE4

 

3

 

I/O

 

5VT

Default: PE4

Alternate: TRACED1, EXMC_A20

 

PE5

 

4

 

I/O

 

5VT

Default: PE5

Alternate: TRACED2, EXMC_A21 Remap: TIMER8_CH0

 

PE6

 

5

 

I/O

 

5VT

Default: PE6

Alternate: TRACED3, EXMC_A22 Remap: TIMER8_CH1

VBAT

6

P

-

Default: VBAT

PC13- TAMPER-

RTC

 

7

 

I/O

 

-

 

Default: PC13

Alternate: RTC_TAMPER

PC14-

OSC32IN

 

8

 

I/O

 

-

Default: PC14

Alternate: OSC32IN

PC15- OSC32OU

T

 

9

 

I/O

 

-

 

Default: PC15 Alternate: OSC32OUT

VSS_5

10

P

-

Default: VSS_5

VDD_5

11

P

-

Default: VDD_5

 

OSCIN

 

12

 

I

 

-

Default: OSCIN

Remap: PD0

 

OSCOUT

 

13

 

O

 

-

Default: OSCOUT

Remap:PD1

NRST

14

I/O

-

Default: NRST

 

PC0

 

15

 

I/O

 

-

Default: PC0

Alternate: ADC01_IN10

 

PC1

 

16

 

I/O

 

-

Default: PC1

Alternate: ADC01_IN11

 

PC2

 

17

 

I/O

 

-

Default: PC2

Alternate: ADC01_IN12

 

PC3

 

18

 

I/O

 

-

Default: PC3

Alternate: ADC01_IN13

VSSA

19

P

-

Default: VSSA

VREF-

20

P

-

Default: VREF-

 

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

VREF+

21

P

-

Default: VREF+

VDDA

22

P

-

Default: VDDA

 

PA0-WKUP

 

23

 

I/O

 

-

Default: PA0

Alternate: WKUP, USART1_CTS, ADC01_IN0, TIMER1_CH0_ETI, TIMER4_CH0, TIMER7_ETI

 

PA1

 

24

 

I/O

 

-

Default: PA1

Alternate: USART1_RTS, ADC01_IN1, TIMER4_CH1, TIMER1_CH1

 

PA2

 

25

 

I/O

 

-

Default: PA2

Alternate: USART1_TX, TIMER4_CH2, ADC01_IN2, TIMER8_CH0, TIMER1_CH2, SPI0_IO2

 

PA3

 

26

 

I/O

 

-

Default: PA3

Alternate: USART1_RX, TIMER4_CH3, ADC01_IN3, TIMER1_CH3, TIMER8_CH1, SPI0_IO3

VSS_4

27

P

-

Default: VSS_4

VDD_4

28

P

-

Default: VDD_4

 

 

PA4

 

 

29

 

 

I/O

 

 

-

Default: PA4

Alternate: SPI0_NSS, USART1_CK, DAC_OUT0, ADC01_IN4

Remap: SPI2_NSS, I2S2_WS

 

PA5

 

30

 

I/O

 

-

Default: PA5

Alternate: SPI0_SCK, ADC01_IN5, DAC_OUT1

 

 

PA6

 

 

31

 

 

I/O

 

 

-

Default: PA6

Alternate: SPI0_MISO, TIMER7_BKIN, ADC01_IN6, TIMER2_CH0, TIMER12_CH0

Remap: TIMER0_BKIN

 

 

PA7

 

 

32

 

 

I/O

 

 

-

Default: PA7

Alternate: SPI0_MOSI, TIMER7_CH0_ON, ADC01_IN7, TIMER2_CH1, TIMER13_CH0

Remap: TIMER0_CH0_ON

 

PC4

 

33

 

I/O

 

-

Default: PC4

Alternate: ADC01_IN14

 

PC5

 

34

 

I/O

 

-

Default: PC5

Alternate: ADC01_IN15

 

PB0

 

35

 

I/O

 

-

Default: PB0

Alternate: ADC01_IN8, TIMER2_CH2, TIMER7_CH1_ON

Remap: TIMER0_CH1_ON

 

PB1

 

36

 

I/O

 

-

Default: PB1

Alternate: ADC01_IN9, TIMER2_CH3, TIMER7_CH2_ON

Remap: TIMER0_CH2_ON

PB2

37

I/O

5VT

Default: PB2, BOOT1

 

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

PE7

 

38

 

I/O

 

5VT

Default: PE7 Alternate: EXMC_D4

Remap: TIMER0_ETI

 

PE8

 

39

 

I/O

 

5VT

Default: PE8 Alternate: EXMC_D5

Remap: TIMER0_CH0_ON

 

PE9

 

40

 

I/O

 

5VT

Default: PE9 Alternate: EXMC_D6

Remap: TIMER0_CH0

 

PE10

 

41

 

I/O

 

5VT

Default: PE10 Alternate: EXMC_D7

Remap: TIMER0_CH1_ON

 

PE11

 

42

 

I/O

 

5VT

Default: PE11

Alternate: EXMC_D8 Remap: TIMER0_CH1

 

PE12

 

43

 

I/O

 

5VT

Default: PE12 Alternate: EXMC_D9

Remap: TIMER0_CH2_ON

 

PE13

 

44

 

I/O

 

5VT

Default: PE13 Alternate: EXMC_D10

Remap: TIMER0_CH2

 

PE14

 

45

 

I/O

 

5VT

Default: PE14 Alternate: EXMC_D11

Remap: TIMER0_CH3

 

PE15

 

46

 

I/O

 

5VT

Default: PE15 Alternate: EXMC_D12

Remap: TIMER0_BKIN

 

PB10

 

47

 

I/O

 

5VT

Default: PB10

Alternate: I2C1_SCL, USART2_TX Remap: TIMER1_CH2

 

PB11

 

48

 

I/O

 

5VT

Default: PB11

Alternate: I2C1_SDA, USART2_RX Remap: TIMER1_CH3

VSS_1

49

P

-

Default: VSS_1

VDD_1

50

P

-

Default: VDD_1

 

PB12

 

51

 

I/O

 

5VT

Default: PB12

Alternate: SPI1_NSS, I2S1_WS, I2C1_SMBA, USART2_CK, TIMER0_BKIN, CAN1_RX

 

PB13

 

52

 

I/O

 

5VT

Default: PB13

Alternate: SPI1_SCK, I2S1_CK, USART2_CTS, TIMER0_CH0_ON, CAN1_TX, I2C1_TXFRAME

 

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

PB14

 

53

 

I/O

 

5VT

Default: PB14

Alternate: SPI1_MISO, USART2_RTS, TIMER0_CH1_ON, TIMER11_CH0

 

PB15

 

54

 

I/O

 

5VT

Default: PB15

Alternate: SPI1_MOSI, I2S1_SD, TIMER0_CH2_ON, TIMER11_CH11

 

PD8

 

55

 

I/O

 

5VT

Default: PD8 Alternate: EXMC_D13

Remap: USART2_TX

 

PD9

 

56

 

I/O

 

5VT

Default: PD9 Alternate: EXMC_D14

Remap: USART2_RX

 

PD10

 

57

 

I/O

 

5VT

Default: PD10

Alternate: EXMC_D15 Remap: USART2_CK

 

PD11

 

58

 

I/O

 

5VT

Default: PD11 Alternate: EXMC_A16

Remap: USART2_CTS

 

PD12

 

59

 

I/O

 

5VT

Default: PD12 Alternate: EXMC_A17

Remap: TIMER3_CH0, USART2_RTS

 

PD13

 

60

 

I/O

 

5VT

Default: PD13 Alternate: EXMC_A18

Remap: TIMER3_CH1

 

PD14

 

61

 

I/O

 

5VT

Default: PD14 Alternate: EXMC_D0

Remap: TIMER3_CH2

 

PD15

 

62

 

I/O

 

5VT

Default: PD15 Alternate: EXMC_D1

Remap: TIMER3_CH3, CTC_SYNC

 

PC6

 

63

 

I/O

 

5VT

Default: PC6

Alternate: I2S1_MCK, TIMER7_CH0 Remap: TIMER2_CH0

 

PC7

 

64

 

I/O

 

5VT

Default: PC7

Alternate: I2S2_MCK, TIMER7_CH1 Remap: TIMER2_CH1

 

PC8

 

65

 

I/O

 

5VT

Default: PC8

Alternate: TIMER7_CH2 Remap: TIMER2_CH2

 

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

PC9

 

66

 

I/O

 

5VT

Default: PC9

Alternate: TIMER7_CH3 Remap: TIMER2_CH3

 

PA8

 

67

 

I/O

 

5VT

Default: PA8

Alternate: USART0_CK, TIMER0_CH0, CK_OUT0, VCORE, USBFS_SOF, CTC_SYNC

 

PA9

 

68

 

I/O

 

5VT

Default: PA9

Alternate: USART0_TX, TIMER0_CH1, USBFS_VBUS

 

PA10

 

69

 

I/O

 

5VT

Default: PA10

Alternate: USART0_RX, TIMER0_CH2, USBFS_ID, V1REF

 

PA11

 

70

 

I/O

 

5VT

Default: PA11

Alternate: USART0_CTS, CAN0_RX, USBFS_DM, TIMER0_CH3

 

PA12

 

71

 

I/O

 

5VT

Default: PA12

Alternate: USART0_RTS, CAN0_TX, USBFS_DP, TIMER0_ETI

 

PA13

 

72

 

I/O

 

5VT

Default: JTMS, SWDIO

Remap: PA13

NC

73

-

-

-

VSS_2

74

P

-

Default: VSS_2

VDD_2

75

P

-

Default: VDD_2

 

PA14

 

76

 

I/O

 

5VT

Default: JTCK, SWCLK

Remap:PA14

 

PA15

 

77

 

I/O

 

5VT

Default: JTDI

Alternate: SPI2_NSS, I2S2_WS

Remap: TIMER1_CH0, TIMER1_ETI, PA15, SPI0_NSS

 

PC10

 

78

 

I/O

 

5VT

Default: PC10 Alternate: UART3_TX

Remap: USART2_TX, SPI2_SCK, I2S2_CK

 

PC11

 

79

 

I/O

 

5VT

Default: PC11 Alternate: UART3_RX

Remap: USART2_RX, SPI2_MISO

 

PC12

 

80

 

I/O

 

5VT

Default: PC12 Alternate: UART4_TX

Remap: USART2_CK, SPI2_MOSI, I2S2_SD

 

PD0

 

81

 

I/O

 

5VT

Default: PD0 Alternate: EXMC_D2

Remap: OSCIN, CAN0_RX

 

PD1

 

82

 

I/O

 

5VT

Default: PD1 Alternate: EXMC_D3

Remap: OSCOUT, CAN0_TX

 

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

PD2

 

83

 

I/O

 

5VT

Default: PD2

Alternate: TIMER2_ETI, UART4_RX

 

PD3

 

84

 

I/O

 

5VT

Default: PD3 Alternate: EXMC_CLK

Remap: USART1_CTS

 

PD4

 

85

 

I/O

 

5VT

Default: PD4

Alternate: EXMC_NOE Remap: USART1_RTS

 

PD5

 

86

 

I/O

 

5VT

Default: PD5

Alternate: EXMC_NWE Remap: USART1_TX

 

PD6

 

87

 

I/O

 

5VT

Default: PD6

Alternate: EXMC_NWAIT Remap: USART1_RX

 

PD7

 

88

 

I/O

 

5VT

Default: PD7 Alternate: EXMC_NE0

Remap: USART1_CK

 

PB3

 

89

 

I/O

 

5VT

Default: JTDO

Alternate: SPI2_SCK, I2S2_CK

Remap: TIMER1_CH1, PB3, TRACESWO, SPI0_SCK

 

PB4

 

90

 

I/O

 

5VT

Default: NJTRST

Alternate: SPI2_MISO, I2C0_TXFRAME Remap: TIMER2_CH0, PB4, SPI0_MISO

 

PB5

 

91

 

I/O

 

-

Default: PB5

Alternate: I2C0_SMBA, SPI2_MOSI, I2S2_SD Remap: TIMER2_CH1, SPI0_MOSI, CAN1_RX

 

PB6

 

92

 

I/O

 

5VT

Default: PB6

Alternate: I2C0_SCL, TIMER3_CH0 Remap: USART0_TX, CAN1_TX, SPI0_IO2

 

PB7

 

93

 

I/O

 

5VT

Default: PB7

Alternate: I2C0_SDA, TIMER3_CH1, EXMC_NL(NADV) Remap: USART0_RX, SPI0_IO3

BOOT0

94

I

-

Default: BOOT0

 

PB8

 

95

 

I/O

 

5VT

Default: PB8

Alternate: TIMER3_CH2, TIMER9_CH0 Remap: I2C0_SCL, CAN0_RX

 

PB9

 

96

 

I/O

 

5VT

Default: PB9

Alternate: TIMER3_CH3, TIMER10_CH0 Remap: I2C0_SDA, CAN0_TX

 

PE0

 

97

 

I/O

 

5VT

Default:PE0

Alternate: TIMER3_ETI, EXMC_NBL0

 

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

PE1

 

98

 

I/O

 

5VT

Default: PE1

Alternate: EXMC_NBL1

VSS_3

99

P

-

Default: VSS_3

VDD_3

100

P

-

Default: VDD_3

Notes:
1.Type: I= input, O = output, P = power.
2.I/O Level: 5VT = 5V tolerant.
3.Functions are available in GD32E103xx devices.

GD32E103Rx LQFP64 pin definitions

Table 2-4. GD32E103Rx LQFP64 pin definitions

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

VBAT

1

P

-

Default: VBAT

PC13- TAMPER-

RTC

 

2

 

I/O

 

-

 

Default: PC13

Alternate: RTC_TAMPER

PC14-

OSC32IN

 

3

 

I/O

 

-

Default: PC14

Alternate:OSC32IN

PC15-

OSC32OUT

 

4

 

I/O

 

-

Default: PC15

Alternate:OSC32OUT

 

PD0-OSCIN

 

5

 

I

 

-

Default: OSCIN

Remap: PD0(3)

PD1-

OSCOUT

 

6

 

O

 

-

Default: OSCOUT

Remap: PD1(3)

NRST

7

I/O

-

Default: NRST

 

PC0

 

8

 

I/O

 

-

Default: PC0

Alternate: ADC01_IN10

 

PC1

 

9

 

I/O

 

-

Default: PC1

Alternate: ADC01_IN11

 

PC2

 

10

 

I/O

 

-

Default: PC2

Alternate: ADC01_IN12

 

PC3

 

11

 

I/O

 

-

Default: PC3

Alternate: ADC01_IN13

VSSA

12

P

-

Default: VSSA

VDDA

13

P

-

Default: VDDA

 

PA0-WKUP

 

14

 

I/O

 

-

Default: PA0

Alternate: WKUP, USART1_CTS, ADC01_IN0, TIMER1_CH0_ETI, TIMER4_CH0, TIMER7_ETI

PA1

15

I/O

-

Default: PA1

 

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

 

 

 

Alternate: USART1_RTS, ADC01_IN1, TIMER4_CH1,

 

 

 

 

TIMER1_CH1

 

 

 

 

Default: PA2

PA2

16

I/O

-

Alternate: USART1_TX, TIMER4_CH2, ADC01_IN2,

 

 

 

 

TIMER8_CH0, TIMER1_CH2, SPI0_IO2

 

 

 

 

Default: PA3

PA3

17

I/O

-

Alternate: USART1_RX, TIMER4_CH3, ADC01_IN3,

 

 

 

 

TIMER1_CH3, TIMER8_CH1, SPI0_IO3

VSS_4

18

P

-

Default: VSS_4

VDD_4

19

P

-

Default: VDD_4

 

 

 

 

Default: PA4

 

PA4

 

20

 

I/O

 

-

Alternate: SPI0_NSS, USART1_CK, DAC_OUT0,

ADC01_IN4

 

 

 

 

Remap: SPI2_NSS, I2S2_WS

 

PA5

 

21

 

I/O

 

-

Default: PA5

Alternate: SPI0_SCK, ADC01_IN5, DAC_OUT1

 

 

 

 

Default: PA6

 

PA6

 

22

 

I/O

 

-

Alternate: SPI0_MISO, TIMER7_BKIN, ADC01_IN6,

TIMER2_CH0, TIMER12_CH0

 

 

 

 

Remap: TIMER0_BKIN

 

 

 

 

Default: PA7

 

PA7

 

23

 

I/O

 

-

Alternate: SPI0_MOSI, TIMER7_CH0_ON, ADC01_IN7,

TIMER2_CH1, TIMER13_CH0

 

 

 

 

Remap: TIMER0_CH0_ON

 

PC4

 

24

 

I/O

 

-

Default: PC4

Alternate: ADC01_IN14

 

PC5

 

25

 

I/O

 

-

Default: PC5

Alternate: ADC01_IN15

 

 

 

 

Default: PB0

PB0

26

I/O

-

Alternate: ADC01_IN8, TIMER2_CH2, TIMER7_CH1_ON

 

 

 

 

Remap: TIMER0_CH1_ON

 

 

 

 

Default: PB1

PB1

27

I/O

-

Alternate: ADC01_IN9, TIMER2_CH3, TIMER7_CH2_ON

 

 

 

 

Remap: TIMER0_CH2_ON

PB2

28

I/O

5VT

Default: PB2, BOOT1

 

 

 

 

Default: PB10

PB10

29

I/O

5VT

Alternate: I2C1_SCL, USART2_TX

 

 

 

 

Remap: TIMER1_CH2

 

 

 

 

Default: PB11

PB11

30

I/O

5VT

Alternate: I2C1_SDA, USART2_RX

 

 

 

 

Remap: TIMER1_CH3

 

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

VSS_1

31

P

-

Default: VSS_1

VDD_1

32

P

-

Default: VDD_1

 

PB12

 

33

 

I/O

 

5VT

Default: PB12

Alternate: SPI1_NSS, I2S1_WS, I2C1_SMBA, USART2_CK, TIMER0_BKIN, CAN1_RX

 

PB13

 

34

 

I/O

 

5VT

Default: PB13

Alternate: SPI1_SCK, I2S1_CK, USART2_CTS, TIMER0_CH0_ON, CAN1_TX, I2C1_TXFRAME

 

PB14

 

35

 

I/O

 

5VT

Default: PB14

Alternate: SPI1_MISO, USART2_RTS, TIMER0_CH1_ON, TIMER11_CH0

 

PB15

 

36

 

I/O

 

5VT

Default: PB15

Alternate: SPI1_MOSI, I2S1_SD, TIMER0_CH2_ON, TIMER11_CH11

 

PC6

 

37

 

I/O

 

5VT

Default: PC6

Alternate: I2S1_MCK, TIMER7_CH0 Remap: TIMER2_CH0

 

PC7

 

38

 

I/O

 

5VT

Default: PC7

Alternate: I2S2_MCK, TIMER7_CH1 Remap: TIMER2_CH1

 

PC8

 

39

 

I/O

 

5VT

Default: PC8

Alternate: TIMER7_CH2 Remap: TIMER2_CH2

 

PC9

 

40

 

I/O

 

5VT

Default: PC9

Alternate: TIMER7_CH3 Remap: TIMER2_CH3

 

PA8

 

41

 

I/O

 

5VT

Default: PA8

Alternate: USART0_CK, TIMER0_CH0, CK_OUT0, VCORE, USBFS_SOF, CTC_SYNC

 

PA9

 

42

 

I/O

 

5VT

Default: PA9

Alternate: USART0_TX, TIMER0_CH1, USBFS_VBUS

 

PA10

 

43

 

I/O

 

5VT

Default: PA10

Alternate: USART0_RX, TIMER0_CH2, USBFS_ID, V1REF

 

PA11

 

44

 

I/O

 

5VT

Default: PA11

Alternate: USART0_CTS, CAN0_RX, USBFS_DM, TIMER0_CH3

 

PA12

 

45

 

I/O

 

5VT

Default: PA12

Alternate: USART0_RTS, CAN0_TX, USBFS_DP, TIMER0_ETI

 

PA13

 

46

 

I/O

 

5VT

Default: JTMS, SWDIO

Remap: PA13

 

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

VSS_2

47

P

-

Default: VSS_2

VDD_2

48

P

-

Default: VDD_2

 

PA14

 

49

 

I/O

 

5VT

Default: JTCK, SWCLK

Remap:PA14

 

PA15

 

50

 

I/O

 

5VT

Default: JTDI

Alternate: SPI2_NSS, I2S2_WS

Remap: TIMER1_CH0_ETI, TIMER1_ETI, PA15, SPI0_NSS

 

PC10

 

51

 

I/O

 

5VT

Default: PC10 Alternate: UART3_TX

Remap: USART2_TX, SPI2_SCK, I2S2_CK

 

PC11

 

52

 

I/O

 

5VT

Default: PC11 Alternate: UART3_RX

Remap: USART2_RX, SPI2_MISO

 

PC12

 

53

 

I/O

 

5VT

Default: PC12 Alternate: UART4_TX

Remap: USART2_CK, SPI2_MOSI, I2S2_SD

 

PD2

 

54

 

I/O

 

5VT

Default: PD2

Alternate: TIMER2_ETI, UART4_RX

 

PB3

 

55

 

I/O

 

5VT

Default: JTDO

Alternate: SPI2_SCK, I2S2_CK

Remap: TIMER1_CH1, PB3, TRACESWO, SPI0_SCK

 

PB4

 

56

 

I/O

 

5VT

Default: NJTRST

Alternate: SPI2_MISO, I2C0_TXFRAME Remap: TIMER2_CH0, PB4, SPI0_MISO

 

PB5

 

57

 

I/O

 

-

Default: PB5

Alternate: I2C0_SMBA, SPI2_MOSI, I2S2_SD Remap: TIMER2_CH1, SPI0_MOSI, CAN1_RX

 

PB6

 

58

 

I/O

 

5VT

Default: PB6

Alternate: I2C0_SCL, TIMER3_CH0 Remap: USART0_TX, CAN1_TX, SPI0_IO2

 

PB7

 

59

 

I/O

 

5VT

Default: PB7

Alternate: I2C0_SDA, TIMER3_CH1 Remap: USART0_RX, SPI0_IO3

BOOT0

60

I

-

Default: BOOT0

 

PB8

 

61

 

I/O

 

5VT

Default: PB8

Alternate: TIMER3_CH2, TIMER9_CH0 Remap: I2C0_SCL, CAN0_RX

 

PB9

 

62

 

I/O

 

5VT

Default: PB9

Alternate: TIMER3_CH3, TIMER10_CH0 Remap: I2C0_SDA, CAN0_TX

VSS_3

63

P

-

Default: VSS_3

Notes:
1.Type: I= input, O = output, P = power.
2.I/O Level: 5VT = 5V tolerant.
3.PD0/PD1 cannot be used for EXTI in this package.

ARM® Cortex™-M4 core

The ARM® Cortex®-M4 processor is a high performance embedded processor with DSP instructions which allow efficient signal processing and complex algorithm execution. It brings an efficient, easy-to-use blend of control and signal processing capabilities to meet the digital signal control markets demand. The processor is highly configurable enabling a wide range of implementations from those requiring floating point operations, memory protection and powerful trace technology to cost sensitive devices requiring minimal area, while delivering outstanding computational performance and an advanced system response to interrupts.
32-bit ARM® Cortex®-M4 processor core
Up to 120 MHz operation frequency
Single-cycle multiplication and hardware divider
Floating Point Unit (FPU)
Integrated DSP instructions
Integrated Nested Vectored Interrupt Controller (NVIC)
24-bit SysTick timer

The Cortex®-M4 processor is based on the ARMv7-M architecture and supports both Thumb and Thumb-2 instruction sets. Some system peripherals listed below are also provided by Cortex®-M4:
Internal Bus Matrix connected with ICode bus, DCode bus, system bus, Private Peripheral Bus (PPB) and debug accesses (AHB-AP)
Nested Vectored Interrupt Controller (NVIC)
Flash Patch and Breakpoint (FPB)
Data Watchpoint and Trace (DWT)
Instrument Trace Macrocell (ITM)
Serial Wire JTAG Debug Port (SWJ-DP)
Trace Port Interface Unit (TPIU)


On-chip memory

Up to 128 Kbytes of Flash memory
Up to 32 KB of SRAM

The ARM® Cortex®-M4 processor is structured in Harvard architecture which can use separate buses to fetch instructions and load/store data. 128 Kbytes of inner Flash at most, which includes code Flash that available for storing programs and data, and accessed (R/W) at CPU clock speed with zero wait states. An extra data Flash is also included for storing data mainly. Table 2-2. GD32E103xx memory map shows the memory of the GD32E103xx series of devices, including Flash, SRAM, peripheral, and other pre-defined regions.

Clock, reset and supply management

Internal 8 MHz factory-trimmed RC and external 4 to 32 MHz crystal oscillator
Internal 48 MHz RC oscillator
Internal 40 KHz RC calibrated oscillator and external 32.768 KHz crystal oscillator
1.71 to 3.6 V application supply and I/Os
Supply Supervisor: POR (Power On Reset), PDR (Power Down Reset), and low voltage detector (LVD)
The Clock Control Unit (CCU) provides a range of oscillator and clock functions. These include internal RC oscillator and external crystal oscillator, high speed and low speed two types. Several prescalers allow the frequency configuration of the AHB and two APB domains. The maximum frequency of the two AHB domains are 120MHz. The maximum frequency of the two APB domains including APB1 is 60 MHz and APB2 is 120 MHz. See Figure 2-6. GD32E103xx clock tree for details on the clock tree.
The Reset Control Unit (RCU) controls three kinds of reset: system reset resets the processor core and peripheral IP components. Power-on reset (POR) and power-down reset (PDR) are always active, and ensures proper operation starting from 1.66V/down to 1.62V. The device remains in reset mode when VDD is below a specified threshold. The embedded low voltage detector (LVD) monitors the power supply, compares it to the voltage threshold and generates an interrupt as a warning message for leading the MCU into security.
Power supply schemes:
VDD range: 1.71 to 3.6 V, external power supply for I/Os and the internal regulator. Provided externally through VDD pins.
VDDA range: 1.71 to 3.6 V, external analog power supplies for ADC, reset blocks, RCs and PLL VDDA and VSSA must be connected to VDD and VSS, respectively.
VBAT range: 1.71 to 3.6 V, power supply for RTC, external clock 32.768 KHz oscillator and backup registers (through power switch) when VDD is not present.

3.4.Boot modes

At startup, boot pins are used to select one of three boot options:
Boot from main flash memory (default)
Boot from system memory
Boot from on-chip SRAM

In default condition, boot from main Flash memory is selected. The boot loader is located in the internal boot ROM memory (system memory). It is used to reprogram the Flash memory by using USART0 (PA9 and PA10).

Power saving modes

The MCU supports three kinds of power saving modes to achieve even lower power consumption. They are Sleep mode, Deep-sleep mode, and Standby mode. These operating modes reduce the power consumption and allow the application to achieve the best balance between the CPU operating time, speed and power consumption.
Sleep mode
In sleep mode, only the clock of CPU core is off. All peripherals continue to operate and any interrupt/event can wake up the system.
Deep-sleep mode
In deep-sleep mode, all clocks in the 1.2V domain are off, and all of the high speed crystal oscillator (IRC8M, IRC48M, HXTAL) and PLL are disabled. Only the contents of SRAM and registers are retained. Any interrupt or wakeup event from EXTI lines can wake up the system from the deep-sleep mode including the 16 external lines, the RTC alarm, the LVD output, and USB wakeup. When exiting the deep-sleep mode, the IRC8M is selected as the system clock.
Standby mode
In standby mode, the whole 1.2V domain is power off, the LDO is shut down, and all of IRC8M, IRC48M, HXTAL and PLL are disabled. The contents of SRAM and registers (except Backup Registers) are lost. There are four wakeup sources for the standby mode, including the external reset from NRST pin, the RTC, the FWDG reset, and the rising edge on WKUP pin.

Analog to digital converter (ADC)

12-bit SAR ADC's conversion rate is up to 3 MSPS
12-bit, 10-bit, 8-bit or 6-bit configurable resolution
Hardware oversampling ratio adjustable from 2 to 256x improves resolution to 16-bit
Input voltage range: VREF- to VREF+
Temperature sensor

Up to two 12-bit 3 MSPS multi-channel ADCs are integrated in the device. It has a total of 18 multiplexed channels: 16 external channels, 1 channel for internal temperature sensor (VSENSE), 1 channel for internal reference voltage (VREFINT, VREFINT = 1.2V). The input voltage range is from VREF- to VREF+. An on-chip hardware oversampling scheme improves performance while off-loading the related computational burden from the CPU. An analog watchdog block can be used to detect the channels, which are required to remain within a specific threshold window. A configurable channel management block can be used to perform conversions in single, continuous, scan or discontinuous mode to support more advanced use.
The ADC can be triggered from the events generated by the general level 0 timers (TIMERx, x=1, 2, 3) and the advanced timers (TIMER0 and TIMER7) with internal connection. The

temperature sensor can be used to generate a voltage that varies linearly with temperature. It is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage in a digital value.

Digital to analog converter (DAC)

12-bit DAC with independent output channels
8-bit or 12-bit mode in conjunction with the DMA controller

The 12-bit buffered DAC is used to generate variable analog outputs. The DAC channels can be triggered by the timer or EXTI with DMA support. In dual DAC channel operation, conversions could be done independently or simultaneously. The maximum output value of the DAC is VREF+.

DMA

7 channel DMA0 controller and 5 channel DMA1 controller
Peripherals supported: Timers, ADC, SPIs, I2Cs, USARTs, DAC, I2S

The flexible general-purpose DMA controllers provide a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other system functions. Three types of access method are supported: peripheral to memory, memory to peripheral, memory to memory.
Each channel is connected to fixed hardware DMA requests. The priorities of DMA channel requests are determined by software configuration and hardware channel number. Transfer size of source and destination are independent and configurable.

General-purpose inputs/outputs (GPIOs)

Up to 80 fast GPIOs, all mappable on 16 external interrupt lines
Analog input/output configurable
Alternate function input/output configurable

There are up to 80 general purpose I/O pins (GPIO) in GD32E103xx, named PA0 ~ PA15, PB0 ~ PB15, PC0 ~ PC15, PD0 ~ PD15 and PE0 ~ PE15 to implement logic input/output functions. Each of the GPIO ports has related control and configuration registers to satisfy the requirements of specific applications. The external interrupts on the GPIO pins of the device have related control and configuration registers in the Interrupt/event controller (EXTI). The GPIO ports are pin-shared with other alternative functions (AFs) to obtain maximum flexibility on the package pins. Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current capable except for analog inputs.

Timers and PWM generation

Two 16-bit advanced timer (TIMER0 & TIMER7), ten 16-bit general timers (TIMER1 ~ TIMER4, TIMER8 ~ TIMER13), and two 16-bit basic timer (TIMER5 & TIMER6)
Up to 4 independent channels of PWM, output compare or input capture for each general timer and external trigger input
16-bit, motor control PWM advanced timer with programmable dead-time generation for output match
Encoder interface controller with two inputs using quadrature decoder
24-bit SysTick timer down counter
2 watchdog timers (free watchdog timer and window watchdog timer)

The advanced timer (TIMER0 & TIMER7) can be used as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable dead-time generation. It can also be used as a complete general timer. The 4 independent channels can be used for input capture, output compare, PWM generation (edge-aligned or center-aligned counting modes) and single pulse mode output. If configured as a general 16-bit timer, it has the same functions as the TIMERx timer. It can be synchronized with external signals or to interconnect with other general timers together which have the same architecture and features.
The general timer, can be used for a variety of purposes including general time, input signal pulse width measurement or output waveform generation such as a single pulse generation or PWM output, up to 4 independent channels for input capture/output compare. TIMER1 ~ TIMER4 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. TIMER8 ~ TIMER13 is based on a 16-bit auto-reload upcounter and a 16-bit prescaler. The general timer also supports an encoder interface with two inputs using quadrature decoder.
The basic timer, known as TIMER5 &TIMER6, are mainly used for DAC trigger generation. They can also be used as a simple 16-bit time base.
The GD32E103xx have two watchdog peripherals, free watchdog timer and window watchdog timer. They offer a combination of high safety level, flexibility of use and timing accuracy.
The free watchdog timer includes a 12-bit down-counting counter and an 8-bit prescaler. It is clocked from an independent 40 KHz internal RC and as it operates independently of the main clock, it can operate in deep-sleep and standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management.
The window watchdog timer is based on a 7-bit down counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early wakeup interrupt capability and the counter can be frozen in debug mode.
The SysTick timer is dedicated for OS, but could also be used as a standard down counter. It features:

A 24-bit down counter
Auto reload capability
Maskable system interrupt generation when the counter reaches 0
Programmable clock source


Real time clock (RTC)

32-bit up-counter with a programmable 20-bit prescaler
Alarm function
Interrupt and wake-up event

The real time clock is an independent timer which provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and an expected interrupt. The RTC features a 32-bit programmable counter for long-term measurement using the compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 KHz from external crystal oscillator.

Inter-integrated circuit (I2C)

Up to two I2C bus interfaces can support both master and slave mode with a frequency up to 1 MHz (Fast mode plus)
Provide arbitration function, optional PEC (packet error checking) generation and checking
Supports 7-bit and 10-bit addressing mode and general call addressing mode

The I2C interface is an internal circuit allowing communication with an external I2C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line (SDA) and a serial clock line (SCL). The I2C module provides several data transfer rates: up to 100 KHz of standard mode, up to 400 KHz of the fast mode and up to 1 MHz of the fast mode plus. The I2C module also has an arbitration detect function to prevent the situation where more than one master attempts to transmit data to the I2C bus at the same time. A CRC-8 calculator is also provided in I2C interface to perform packet error checking for I2C data.

Serial peripheral interface (SPI)

Up to three SPI interfaces with a frequency of up to 30 MHz
Support both master and slave mode
Hardware CRC calculation and transmit automatic CRC error checking
Quad-SPI configuration available in master mode (only in SPI0)
SPI TI mode and NSS pulse mode supported

The SPI interface uses 4 pins, among which are the serial data input and output lines (MISO & MOSI), the clock line (SCK) and the slave select line (NSS). Both SPIs can be served by the DMA controller. The SPI interface may be used for a variety of purposes, including simplex synchronous transfers on two lines with a possible bidirectional data line or reliable communication using CRC checking.

Universal synchronous asynchronous receiver transmitter (USART)
Up to three USARTs and two UARTs with operating frequency up to 7.5MBits/s
Supports both asynchronous and clocked synchronous serial communication modes
IrDA SIR encoder and decoder support
LIN break generation and detection
USARTs support ISO 7816-3 compliant smart card interface

The USART (USART0, USART1 and USART2) and UART (UART3 & UART4) are used to
translate data between parallel and serial interfaces, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. It is also commonly used for RS-232 standard communication. The USART/UART includes a programmable baud rate generator which is capable of dividing the system clock to produce a dedicated clock for the USART transmitter and receiver. The USART/UART also supports DMA function for high speed data communication except UART4.

Inter-IC sound (I2S)

Two I2S bus interfaces with sampling frequency from 8 KHz to 192 KHz
Support either master or slave mode

The Inter-IC sound (I2S) bus provides a standard communication interface for digital audio applications by 3-wire serial lines. GD32E103xx contain two I2S-bus interfaces that can be operated with 16/32 bit resolution in master or slave mode, pin multiplexed with SPI1 and SPI2. The audio sampling frequency from 8 KHz to 192 KHz is supported.

Universal serial bus full-speed interface (USBFS)

One full-speed USB Interface with frequency up to 12 Mbit/s
Internal 48 MHz oscillator support crystal-less operation
Internal main PLL for USB CLK compliantly

The Universal Serial Bus (USB) is a 4-wire bus with 4 bidirectional endpoints. The device controller enables 12 Mbit/s data exchange with integrated transceivers. Transaction formatting is performed by the hardware, including CRC generation and checking. It supports

device modes. The status of a completed USB transfer or error condition is indicated by status registers. An interrupt is also generated if enabled. The required precise 48 MHz clock which can be generated from the internal main PLL (the clock source must use an HXTAL crystal oscillator) or by the internal 48 MHz oscillator in automatic trimming mode that allows crystal- less operation.

Controller area network (CAN)

Two CAN interface supports the CAN protocols version 2.0A, 2.0B, ISO11891-1:2015 and BOSCH CAN FD specification with communication frequency up to 1 Mbit/s of classic frames and 6 Mbit/s of FD frames
Internal main PLL for CAN CLK compliantly

Controller area network (CAN) is a method for enabling serial communication in field bus. The CAN protocol has been used extensively in industrial automation and automotive applications. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three mailboxes for transmission and two FIFOs of three message deep for reception. It also provides 28 scalable/configurable identifier filter banks for selecting the incoming messages needed and discarding the others.

External memory controller (EXMC)

Supported external memory: SRAM, PSRAM, ROM and NOR-Flash
Up to 16-bit data bus
Support to interface with Motorola 6800 and Intel 8080 type LCD directly

External memory controller (EXMC) is an abbreviation of external memory controller. It is divided in to several sub-banks for external device support, each sub-bank has its own chip selection signal but at one time, only one bank can be accessed. The EXMC support code execution from external memory. The EXMC also can be configured to interface with the most common LCD module of Motorola 6800 and Intel 8080 series and reduce the system cost and complexity.

Debug mode

Serial wire JTAG debug port (SWJ-DP)

The ARM®SWJ-DP Interface is embedded and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

Package and operation temperature

LQFP100 (GD32E103Vx), LQFP64 (GD32E103Rx) and LQFP48 (GD32E103Cx) QFN36

(GD32E103Tx)
Operation temperature range: -40°C to +85°C (industrial level)

扫二维码用手机看

飞睿无线定位测距uwb标签UWB芯片厂商UWB定位公司实现无缝定位的领跑者

在当今数字化世界中,定位技术的重要性越来越被广泛认知和应用。从室内导航到物流跟踪,无线测距UWB芯片的出现为各行各业带来了新的可能性。而在这个充满竞争的领域中,一家名为飞睿UWB定位公司的无线定位测距uwb标签UWB芯片厂商,凭借其先进的技术和创新能力,成功成为实现无缝定位的先进者。 UWB(Ultra-Wideband)是一种广泛应用于室内定位和跟踪的无线通信技术。相比传统的定位技术,如GPS或Wi-Fi,UWB具有更高的精度和定位准确性。这一技术利用短脉冲信号的传播时间来计算物体与基站之间的距离,从而实现高精度的定位。 飞睿UWB定位公司作为一家专注于UWB技术研发和应用的企业,不仅在无线定位测距uwb标签UWB芯片领域拥有深厚的技术实力,而且在产品研发和市场推广方面也积累了丰富的经验。该公司的核心业务包括UWB芯片的设计、制造、销售和技术支持,并提供完整的解决方案来满足不同行业的需求。 一、UWB芯片的优势和应用 UWB芯片作为实现准确定位和跟踪的关键技术,具有许多优势和广泛应用的潜力。首先,UWB芯片具有高精度的定位能力,可以达到亚厘米级的精度,尤其适用于对位置精度要求高的应用场景。其次,UWB技术在室内环境中的表现出色,能够克服传统技术在室内多路径干扰和信号衰减方面的限制。此外,UWB芯片还能够实现低功耗和高数据传输速率,适用于物流追踪、室内导航、智能家居等领域。 二、飞睿UWB定位公司的研发实力和技术创新 飞睿UWB定位公司以其突出的研发实力和技术创新能力在行业内独树一帜。该公司拥有一支由工程师和科研人员组成的专业团队,致力于UWB芯片的研发和创新应用。不仅在硬件设计方面有着丰富的经验,还在信号处理算法和定位算法等核心技术上有着深入研究。通过持续的技术创新和研发投入,UWB定位公司不断地提升产品性能,满足市场需求。 三、UWB定位公司的产品与解决方案 飞睿作为一家专业的无线定位测距uwb标签UWB芯片厂商,UWB定位公司提供了多款优秀的产品与解决方案。首先,飞睿的UWB芯片具有高性能和可靠性,能够满足各行业对定位精度和稳定性的要求。其次,UWB定位公司还提供完善的软件开发工具和技术支持,帮助客户快速集成和开发应用。此外,UWB定位公司还定制化的解决方案,根据客户的具体需求提供全面的技术支持和服务,确保系统的稳定运行和良好的用户体验。 四、UWB定位公司的应用案例 UWB定位公司的产品和解决方案已经成功应用于多个行业,并取得了显著的成果。以下是一些应用案例的介绍: 1. 物流和仓储管理:UWB定位技术可以实时追踪货物的位置和运动轨迹,提高物流效率和准确性。通过在仓库内部安装UWB基站,可以实现对货物的高精度定位,减少货物丢失和误配的情况,提升仓储管理的效率。 2. 室内导航和定位服务:UWB芯片可以用于室内导航和定位服务,帮助人们快速找到目的地并提供导航指引。在商场、机场、医院等场所安装UWB基站,可以提供准确的导航服务,为用户提供更好的体验。 3. 车联网和自动驾驶:UWB技术在车联网和自动驾驶领域也有广泛应用。通过在车辆中安装UWB传感器和芯片,可以实现车辆之间的精准通信和定位,提升驾驶安全性和车辆自主性。 4. 工业制造和机器人:在工业制造和机器人领域,UWB技术可以用于定位和跟踪移动设备和机器人的位置,提高生产效率和自动化水平。通过与其他传感器和系统的结合,可以实现更智能化的制造和操作。 五、未来发展和挑战 飞睿作为无线定位测距uwb标签UWB芯片厂商和定位技术提供商,UWB定位公司面临着许多机遇和挑战。随着物联网和人工智能的快速发展,对于精准定位和跟踪的需求将越来越大。UWB技术在室内定位、智能交通、工业制造等领域有着广阔的应用前景。然而,市场竞争激烈,技术要求不断提高,对于UWB定位公司来说,需要不断加强技术研发和创新能力,提供更优秀的产品和解决方案,赢得客户的信任和市场份额。 六、技术合作与生态建设 飞睿UWB定位公司在推动技术合作与生态建设方面也取得了显著成绩。他们积极与其他行业的厂商和合作伙伴进行技术交流和合作,共同推动UWB技术的发展和应用。通过与硬件设备生产商、软件开发公司以及系统集成商等的合作,UWB定位公司不仅拓展了产品的应用领域,还实现了技术的互补和资源的共享,加快了技术创新的速度和效果。 七、用户体验与满意度 作为先进的UWB芯片厂商和定位技术提供商,飞睿UWB定位公司一直将用户体验和满意度放在优先位置。他们注重产品的易用性和稳定性,在产品设计和功能开发上持续优化,以提供更好的用户体验。同时,UWB定位公司还建立了完善的售后服务体系,及时响应客户的需求和问题,并提供技术支持和解决方案,确保用户能够充分发挥UWB技术的价值和效果,获得满意的使用体验。 八、安全与隐私保护 在定位技术应用的同时,飞睿UWB定位公司也重视用户的安全和隐私保护。他们在产品设计和开发中注入了安全机制,采用加密和身份验证等技术手段,确保用户的数据和隐私得到有效保护。同时,UWB定位公司严格遵守相关法规和行业标准,保证数据的合法和合规使用,为用户提供可信赖的定位解决方案。 九、社会责任与可持续发展 作为一家具有社会责任感的企业,飞睿uwb标签UWB定位公司积极关注可持续发展和环境保护。他们在生产过程中注重资源的合理利用和能源的节约,致力于减少对环境的影响。同时,UWB定位公司也积极参与社会公益活动,回馈社会,为推动可持续发展和社会进步做出贡献。 总结: 飞睿UWB定位公司作为一家先进的无线定位测距uwb标签UWB芯片厂商和解决方案提供商,通过先进的技术研发和创新能力,成功实现了无缝定位的先进地位。他们的产品和解决方案在物流管理、室内导航、车联网、工业制造等领域展现出了巨大的应用潜力和市场前景。同时,UWB定位公司注重用户体验和满意度,积极推动技术合作与生态建设,关注安全与隐私保护,承担社会责任,致力于可持续发展。相信在不久的将来,UWB定位公司将以其先进的技术和卓越的服务,继续引领无线测距UWB芯片领域的发展,为行业和用户带来更多的创新和价值。
点击查看更多
18
2022-02

uA级别智能门锁低功耗雷达模块让门锁更加智能省电节约功耗

发布时间: : 2022-02--18
uA级别智能门锁低功耗雷达模块让门锁更加智能省电节约功耗,指纹门锁并不是什么新鲜事,我相信每个人都很熟悉。随着近年来智能家居的逐步普及,指纹门锁也进入了成千上万的家庭。今天的功耗雷达模块指纹门锁不仅消除了繁琐的钥匙,而且还提供了各种智能功能,uA级别智能门锁低功耗雷达模块用在智能门锁上,可以实现门锁的智能感应屏幕,使电池寿命延长3-5倍,如与其他智能家居连接,成为智能场景的开关。所以今天的指纹门锁更被称为智能门锁。 今天,让我们来谈谈功耗雷达模块智能门锁的安全性。希望能让更多想知道智能门锁的朋友认识下。 指纹识别是智能门锁的核心 指纹识别技术在我们的智能手机上随处可见。从以前的实体指纹识别到屏幕下的指纹识别,可以说指纹识别技术已经相当成熟。指纹识别可以说是整个uA级低功耗雷达模块智能门锁的核心。 目前主要有三种常见的指纹识别方法,即光学指纹识别、半导体指纹识别和超声指纹识别。 光学指纹识别 让我们先谈谈光学指纹识别的原理实际上是光的反射。我们都知道指纹本身是不均匀的。当光照射到我们的指纹上时,它会反射,光接收器可以通过接收反射的光来绘制我们的指纹。就像激光雷达测绘一样。 光学指纹识别通常出现在打卡机上,手机上的屏幕指纹识别技术也使用光学指纹识别。今天的光学指纹识别已经达到了非常快的识别速度。 然而,光学指纹识别有一个缺点,即硬件上的活体识别无法实现,容易被指模破解。通常,活体识别是通过软件算法进行的。如果算法处理不当,很容易翻车。 此外,光学指纹识别也容易受到液体的影响,湿手解锁的成功率也会下降。 超声指纹识别 超声指纹识别也被称为射频指纹识别,其原理与光学类型相似,但超声波使用声波反射,实际上是声纳的缩小版本。因为使用声波,不要担心水折射会降低识别率,所以超声指纹识别可以湿手解锁。然而,超声指纹识别在防破解方面与光学类型一样,不能实现硬件,可以被指模破解,活体识别仍然依赖于算法。 半导体指纹识别 半导体指纹识别主要采用电容、电场(即我们所说的电感)、温度和压力原理来实现指纹图像的收集。当用户将手指放在前面时,皮肤形成电容阵列的极板,电容阵列的背面是绝缘极板。由于不同区域指纹的脊柱与谷物之间的距离也不同,因此每个单元的电容量随之变化,从而获得指纹图像。半导体指纹识别具有价格低、体积小、识别率高的优点,因此大多数uA级低功耗雷达模块智能门锁都采用了这种方案。半导体指纹识别的另一个功能是活体识别。传统的硅胶指模无法破解。 当然,这并不意味着半导体可以百分识别活体。所谓的半导体指纹识别活体检测不使用指纹活体体征。本质上,它取决于皮肤的材料特性,这意味着虽然传统的硅胶指模无法破解。 一般来说,无论哪种指纹识别,都有可能被破解,只是说破解的水平。然而,今天的指纹识别,无论是硬件生活识别还是算法生活识别,都相对成熟,很难破解。毕竟,都可以通过支付级别的认证,大大保证安全。 目前,市场上大多数智能门锁仍将保留钥匙孔。除了指纹解锁外,用户还可以用传统钥匙开门。留下钥匙孔的主要目的是在指纹识别故障或智能门锁耗尽时仍有开门的方法。但由于有钥匙孔,它表明它可以通过技术手段解锁。 目前市场上的锁等级可分为A、B、C三个等级,这三个等级主要是通过防暴开锁和防技术开锁的程度来区分的。A级锁要求技术解锁时间不少于1分钟,B级锁要求不少于5分钟。即使是高级别的C级锁也只要求技术解锁时间不少于10分钟。 也就是说,现在市场上大多数门锁,无论是什么级别,在专业的解锁大师面前都糊,只不过是时间长短。 安全是重要的,是否安全增加了人们对uA级别低功耗雷达模块智能门锁安全的担忧。事实上,现在到处都是摄像头,强大的人脸识别,以及移动支付的出现,使家庭现金减少,所有这些都使得入室盗窃的成本急剧上升,近年来各省市的入室盗窃几乎呈悬崖状下降。 换句话说,无论锁有多安全,无论锁有多难打开,都可能比在门口安装摄像头更具威慑力。 因此,担心uA级别低功耗雷达模块智能门锁是否不安全可能意义不大。毕竟,家里的防盗锁可能不安全。我们应该更加关注门锁能给我们带来多少便利。 我们要考虑的是智能门锁的兼容性和通用性。毕竟,智能门锁近年来才流行起来。大多数人在后期将普通机械门锁升级为智能门锁。因此,智能门锁能否与原门兼容是非常重要的。如果不兼容,发现无法安装是一件非常麻烦的事情。 uA级别低功耗雷达模块智能门锁主要是为了避免带钥匙的麻烦。因此,智能门锁的便利性尤为重要。便利性主要体现在指纹的识别率上。手指受伤导致指纹磨损或老年人指纹较浅。智能门锁能否识别是非常重要的。 当然,如果指纹真的失效,是否有其他解锁方案,如密码解锁或NFC解锁。还需要注意密码解锁是否有虚假密码等防窥镜措施。 当然,智能门锁的耐久性也是一个需要特别注意的地方。uA级别低功耗雷达模块智能门锁主要依靠内部电池供电,这就要求智能门锁的耐久性尽可能好,否则经常充电或更换电池会非常麻烦。 智能门锁低功耗雷达模块:让门锁更加智能省电节约功耗 在当今信息化时代,智能门锁已经成为人们生活中不可或缺的一部分。对于门锁制造商来说,如何提高门锁的安全性、实用性和便利性,成为他们面对的重要课题。随着人们对门锁智能化的需求越来越高,门锁的能耗问题也成为了门锁制造商需要重视的问题。为此,越来越多的门锁制造商开始推出以低功耗为主题的系列产品。在这样的背景下,智能门锁低功耗雷达模块应运而生。 智能门锁低功耗雷达模块是一种新型技术,其采取雷达技术对门锁周围的物体进行探测,一旦发现门锁附近有人靠近,便会将门锁自动解锁,无需使用钥匙。同时,在保持智能控制的前提下,实现了门锁省电、节约功耗,延长门锁使用寿命。 在使用智能门锁低功耗雷达模块的门锁中,控制电路和自动解锁机制是关键的部件。控制电路采用先进的芯片技术,通过优秀的功耗控制以实现模块化管理。而自动解锁机制不仅可以通过微波信号控制实现门锁的无钥匙解锁,还能够在门锁未处理的情况下自动锁定,保障门锁的安全。 智能门锁低功耗雷达模块的主要特点是:低功耗、高灵敏度和高可靠性。该模块在进行人体检测时,可以远距离探测到距离为5-7米远处的人体信号,目标检测速度极快,而且对门锁周围的环境要求不高。同时,该模块采用了自适应自动补偿技术,能够根据不同环境的变化自动调整信号发射和接收参数,减小误检率。 在使用智能门锁低功耗雷达模块的门锁中,其功耗可以做到非常低,一组电池能够支持门锁持续使用几年左右。而且这样的智能门锁除了具有自动解锁的功能,还可与APP相互匹配,实现了远程操作的便捷性。 总的来说,智能门锁低功耗雷达模块的问世,解决了门锁安全性和省电节省方面的问题,是智能门锁材料不可或缺的一部分。作为门锁制造商,只有不断创新,利用这种新型技术,将会在行业中占据重要的地位。 除了上文所述的主要特点和优势,智能门锁低功耗雷达模块还具有以下几点: 1. 实时监测门锁周围环境变化,通过物体的距离体积和运动来确定是否有人靠近门锁,并控制门锁的开启或关闭,使得门锁更加智能化。 2. 可对门锁附件进行检测,如门挂、门应急照明灯以及紧急呼叫按钮等,并及时给出响应,确保门锁能够正常运作。这样,门锁在不受干扰的情况下,能够 保持安全通道。 3. 通过智能学习技术,能够自适应网站多种环境的变化,让智能门锁低功耗雷达模块更加准确和精细的控制门锁的开关,节约能耗并延长使用寿命。 4. 能够与其他智能电器相连,如智能家居系统、电视等,形成智能家居生态圈,更好地控制家庭访客进出,让生活更加方便。 综上所述,智能门锁低功耗雷达模块的出现,对提升门锁能耗管理和智能化有着重要作用。门锁制造商只有将这些新型技术运用到门锁产品中,才能更加贴合用户需求,满足消费市场的日益增长的智能化需求。
查看详情 查看详情
14
2022-01

微波雷达传感器雷达感应浴室镜上的应用

发布时间: : 2022-01--14
微波雷达传感器雷达感应浴室镜上的应用,如今,家用电器的智能化已成为一种常态,越来越多的人开始在自己的浴室里安装智能浴室镜。但是还有很多人对智能浴镜的理解还不够深入,今天就来说说这个话题。 什么是智能浴室镜?智慧型浴室镜,顾名思义,就是卫浴镜子智能化升级,入门级产品基本具备了彩灯和镜面触摸功能,更高档次的产品安装有微波雷达传感器智能感应,当感应到有人接近到一定距离即可开启亮灯或者亮屏操作,也可三色无极调,智能除雾,语音交互,日程安排备忘,甚至在镜子上看电视,听音乐,气象预报,问题查询,智能控制,健康管理等。 智能化雷达感应浴室镜与普通镜的区别,为什么要选TA?,就功能而言,普通浴镜价格用它没有什么压力!而且雷达感应智能浴镜会让人犹豫不决是否“值得一看”。就功能和应用而言,普通浴镜功能单一,而微波雷达传感器智能浴室镜功能创新:镜子灯光色温和亮度可以自由调节,镜面还可以湿手触控,智能除雾,既环保又健康! 尽管智能浴镜比较新颖,但功能丰富,体验感更好,特别是入门级的智能浴镜,具有基础智能化功能,真的适合想体验下智能化的小伙伴们。 给卫生间安装微波雷达传感器浴室镜安装注意什么? ①确定智能浴室镜的安装位置,因为是安装时在墙壁上打孔,一旦安装后一般无法移动位置。 ②在选购雷达感应智能浴室镜时,根据安装位置确定镜子的形状和尺寸。 ③确定智能浴镜的安装位置后,在布线时为镜子预留好电源线。 ④确定微波雷达传感器智能浴镜的安装高度,一般智能浴镜的标准安装高度约85cm(从地砖到镜子底),具体安装高度要根据家庭成员的身高及使用习惯来决定。 ⑤镜面遇到污渍,可用酒精或30%清洁稀释液擦洗,平时可用干毛巾养护,注意多通风。
查看详情 查看详情
23
2024-04

孩子防丢品牌GPS定位器成本与市场分析

发布时间: : 2024-04--23
在当今社会,随着科技的发展和人们生活节奏的加快,孩子们面临的走失和安全问题日益严重。家长们急需一种能够实时掌握孩子位置,确保其安全的工具。GPS定位器正是在这种背景下应运而生,成为家长们关心孩子安全的必备工具。它利用全球定位系统(GPS)技术,能够实时追踪孩子的位置,提供精准的定位信息,帮助家长随时掌握孩子的行踪,有效预防和解决孩子走失问题。此外,GPS定位器还具有一键求助、轨迹记录等附加功能,能够为孩子提供更加全面的安全保障。 二、孩子防丢品牌GPS定位器的成本构成 硬件成本: 芯片:负责处理和传输信息,是GPS定位器的核心部分。高品质的芯片能够提高定位的准确性和速度。 电池:为设备提供电力,持久耐用的电池是保证长时间追踪的关键。 GPS模块:负责接收和发送卫星信号,进行定位。模块的质量直接关系到定位的准确性。 软件成本: 定位算法:将接收到的卫星信号转化为具体的地理位置信息,算法的优化能提高定位效率。 数据存储和处理:软件需要处理和存储大量的定位信息,因此稳定的数据存储技术是必要的。 产品设计:需要投入大量资源进行市场调研、用户需求分析以及产品设计。 测试和迭代:确保产品在各种环境下的稳定性和可靠性,需要进行严格的测试和不断的迭代优化。 品牌推广:包括广告投放、活动策划等,旨在提高品牌知名度和认知度。 线上线下渠道:建立完善的分销网络,包括线上电商平台、实体店等,以便产品能够覆盖更广的消费者群体。 三、市场现状与竞争分析 目前,孩子防丢品牌GPS定位器市场呈现出百花齐放的态势。市场上既有老牌的GPS定位器品牌,也有新兴的互联网品牌。价格方面,从几十元到数百元不等;功能上,从基本的定位到具有高清视频传输、远程通话等多种附加功能。竞争激烈的市场环境下,各品牌都在努力寻找自己的市场定位和竞争优势。例如,一些品牌主打市场,强调产品的性能和品质;另一些品牌则聚焦中低端市场,通过提供丰富的附加功能和高性价比来吸引消费者。同时,随着智能手机的普及和APP应用的兴起,一些品牌开始与手机厂商合作,推出与手机相结合的GPS定位器产品,进一步拓宽了市场空间。然而,市场竞争也带来了产品质量参差不齐、价格战等问题。为了在竞争中脱颖而出,品牌需要不断创新和提高产品的性能和质量。 四、如何降低孩子防丢品牌GPS定位器的成本 优化硬件设计: 选用性价比高的芯片和电池材料。 优化硬件结构,减少不必要的元件和材料。 通过集成更多的功能到更小的空间中来降低制造成本。 规模经济: 扩大生产规模可以降低单位产品的成本。 通过与供应商建立长期合作关系来获得更好的采购价格。 精简生产和供应链管理: 优化生产和供应链管理流程,减少中间环节和浪费。 采用先进的生产技术和自动化生产线来提高生产效率。 创新销售和营销策略: 利用社交媒体和网络广告来降低传统广告的成本。 通过线上线下活动和优惠促销来吸引新客户并增加复购率。 技术创新与合作: 通过与供应商、研发机构等进行合作,共同研发新技术和新材料,降低生产成本和提高产品质量。同时,技术创新还能带来差异化竞争优势,使产品在市场上更具竞争力。例如,采用更先进的芯片技术和算法优化可以提高定位精度和速度;通过与移动设备厂商合作可以将产品与手机进行无缝连接,提供更便捷的使用体验。通过这些措施的综合运用,可以有效降低孩子防丢品牌GPS定位器的成本,提高产品的性价比和市场竞争力。同时,也有助于推动整个行业的健康发展。 五、消费者选择与建议 作为消费者,在选择孩子防丢品牌的GPS定位器时,应从以下几个方面进行考虑: 性能和稳定性:选择性能稳定、定位准确的GPS定位器,能够保证孩子位置信息的准确性和可靠性。 价格:不同品牌和型号的GPS定位器价格差异较大,消费者应根据自己的预算和需求进行选择。同时,要注意产品的性价比,不要过分追求低价或高价产品。 品牌知名度:选择知名品牌的产品,能够获得更好的品质保证和售后服务。 用户评价:查看其他消费者的评价和口碑,了解产品的性能、质量和使用体验,以便做出更明智的选择。 安全性和隐私保护:确保选择的GPS定位器产品具有安全防护措施和隐私保护功能,防止个人信息泄露和被滥用。 附加功能:除了基本的定位功能外,还可以考虑选择具有其他附加功能的产品,如远程通话、一键求助等,以提供更全面的安全保障。 电池续航时间:对于长时间需要追踪孩子的场景,电池续航时间是一个重要的考虑因素。选择具有较长续航时间的GPS定位器能够保证更长时间的使用。 易用性:操作简单、界面友好的GPS定位器更容易被家长们使用,也更能满足孩子防丢的需求。 售后服务:选择提供良好售后服务的品牌,以便在使用过程中遇到问题时能够得到及时解决和帮助。 综上所述,消费者在选择孩子防丢品牌的GPS定位器时,应综合考虑产品的性能、价格、品牌知名度、用户评价、安全性、附加功能、电池续航时间、易用性和售后服务等方面。通过细致的比较和筛选,选择适合自己和孩子的GPS定位器产品,为孩子的安全提供可靠的保障。同时,作为家长和教育工作者,我们也要加强孩子的安全意识教育,培养自我保护的能力,共同营造一个安全和谐的社会环境。
查看详情 查看详情
23
2024-04

孩子防丢器高精度uwb定位器让儿童安全防护更上一层楼

发布时间: : 2024-04--23
在当今社会,儿童安全问题已成为家长和教育工作者关注的焦点。孩子防丢器作为一种利用先进技术保障儿童安全的设备,正逐渐受到人们的青睐。其中,高精度UWB(Ultra-Wideband)定位技术凭借其独特的优势,成为了孩子防丢器的核心技术。本文将深入探讨高精度UWB定位器在孩子防丢器中的应用,并分析其市场现状和发展趋势。 UWB技术解析 UWB技术是一种无线通信技术,通过发送纳秒级脉冲信号来计算目标物体的距离。与传统的定位技术相比,UWB技术具有高精度、低功耗、抗干扰能力强等优点。在孩子防丢器中,UWB技术能够实现厘米级精度的定位,这意味着家长或教育工作者可以更准确地了解孩子的位置,从而更好地保障的安全。此外,UWB技术还具有安全性高的特点,能够有效地保护用户隐私。 孩子防丢器的功能与特点 高精度UWB定位器的功能丰富多样,能够满足各种实际需求。实时定位功能是孩子防丢器的核心功能之一,能够帮助家长或教育工作者随时了解孩子的位置。此外,历史轨迹查询功能可以记录孩子的行动轨迹,为查找失踪儿童提供重要线索。安全区域设定功能可以根据实际需要设定安全区域,一旦孩子离开该区域,设备会立即发出警报,及时提醒监护人采取措施。这些功能使得高精度UWB定位器在孩子防丢器中具有广泛的应用前景。 市场现状与趋势 当前,孩子防丢器市场呈现出蓬勃发展的态势。随着UWB技术的普及和消费者对儿童安全重视程度的提高,高精度UWB定位器在市场中的份额逐年增长。未来,随着技术的不断进步和应用场景的拓展,孩子防丢器市场将进一步扩大。同时,市场竞争也将更加激烈。为了在竞争中脱颖而出,企业需要不断创新和优化产品性能,以满足消费者日益增长的需求。 实际应用案例分享 在实际应用中,高精度UWB定位器已经取得了显著的效果。例如,某家庭的孩子走失了,家长利用高精度UWB定位器迅速准确地定位了孩子的位置,并成功将其找回。此外,一些学校和教育机构也开始采用高精度UWB定位器来保障学生的安全。这些成功的案例充分证明了高精度UWB定位器在保障儿童安全方面的巨大价值。 如何选择合适的防丢器 在选择高精度UWB定位器时,家长和教育工作者应关注以下几个方面:首先,要选择知名品牌和正规渠道购买,以确保产品的质量和售后服务的可靠性;其次,要关注设备的定位精度和续航能力,选择精度高、续航能力强的设备能更好地满足实际需求;要根据实际使用场景选择合适的产品规格和功能,如防水、防摔等特殊功能可以根据实际需求进行选择。此外,价格也是需要考虑的因素之一,家长和教育工作者应根据自己的预算选择合适的产品。 未来展望 未来,随着UWB技术的不断发展和完善,高精度UWB定位器在孩子防丢器中的应用将更加广泛。同时,随着物联网、云计算等技术的融合应用,孩子防丢器的功能将更加丰富多样。例如,实时视频监控功能可以让家长或教育工作者随时查看孩子的实时画面,智能预警功能可以通过分析孩子的行为习惯提前预测可能存在的风险。此外,随着消费者对儿童安全需求的不断提高,孩子防丢器的设计和用户体验也将得到持续优化。例如,更小巧、更时尚的外观设计以及更简单、更人性化的操作界面可以让消费者更加方便地使用孩子防丢器。总之,未来孩子防丢器市场将呈现出更加多元化、智能化的发展趋势。    
查看详情 查看详情
22
2024-04

双向防丢器UWB儿童定位器追踪器:守护孩子安全,让关爱不再遗失

发布时间: : 2024-04--22
UWB(Ultra-Wideband)技术是一种无线通信技术,以其独特的窄脉冲信号传输方式,实现了高精度定位和数据传输。与传统通信技术相比,UWB具有功耗低、抗干扰能力强、定位精度高等优点。 二、双向防丢器UWB儿童定位器追踪器的功能特点 实时定位: UWB技术利用窄脉冲信号在室内和室外环境中都能实现高精度定位。这对于在大型商场、公园或学校等复杂环境中寻找孩子特别有帮助。 通过手机应用程序,家长可以随时查看孩子的位置,掌握孩子的行动轨迹,不再因为找不到孩子而焦虑。 该功能还能帮助家长了解孩子上学或放学的路线,确保他们安全到达目的地。 双向通讯: 家长和孩子可以通过语音或文字进行实时沟通,方便家长了解孩子的情况,也能在孩子遇到紧急情况时及时求救。 家长还可以设定一些常用短语或提醒,让孩子在需要时快速发送给家长。 这种通讯方式不仅限于手机应用程序,还可以通过配套的智能手表等设备进行。 安全围栏: 家长可以设定一个安全区域,例如家、学校或常去的公园等。一旦孩子离开这个区域,设备会立即发送警报通知给家长的手机。 这为家长提供了一种额外的保障,确保孩子在安全的环境中活动。 紧急求助: 在遇到紧急情况时,孩子可以触发SOS功能,自动发送求救信息和当前位置到家长的手机上。 这对于防止绑架、走失等意外事件非常有用,让家长和孩子在遇到危险时能够迅速得到帮助。 防水设计: 考虑到孩子们经常会在户外玩耍,这款定位器的设计具备防水功能,即使在雨天或孩子不慎将设备接触到水时也能正常使用。 这增加了设备的耐用性,确保其能够伴随孩子度过愉快的童年时光。 外观与佩戴方式: 设备设计小巧轻便,方便孩子携带。可爱的外观和舒适的佩戴方式使得孩子愿意长时间佩戴。 可选的挂绳和扣环确保设备牢固地固定在孩子身上,不易丢失。 易用性: 操作简单直观,适合所有年龄段的孩子使用。家长也可以轻松设置和使用该设备。 通过手机应用程序的直观界面,家长可以轻松查看孩子的位置、设置安全区域和调整其他设置。 三、如何选择合适的儿童定位器 考虑孩子的年龄和活动范围: 对于年龄较小的孩子,选择小巧轻便、易于携带的定位器是关键。 对于年龄较大的孩子,可能需要更强大的功能和更长的续航时间。 考虑孩子的主要活动范围,例如是否经常在户外或室内活动,有助于选择更适合的定位器。 关注设备的续航能力: 选择一款具有较长续航时间的定位器,以确保在较长时间段内不需要频繁充电。 了解设备的待机时间和正常使用时间,以便合理安排充电计划。 安全性与隐私保护: 选择经过认证的正规品牌,确保设备的安全性能得到保障。 确保定位器具备加密传输数据和保护隐私的功能,防止个人位置信息被滥用或泄露。 品牌与售后服务: 选择知名品牌,可以更有保障地获得优质的产品和服务。 了解售后服务政策,以便在设备出现问题时能够得到及时的技术支持和解决方案。 价格与性价比: 根据家庭预算和实际需求,选择价格合理且功能齐全的定位器。 考虑性价比,确保所支付的价格与所获得的功能和性能相匹配。 外观设计与耐用性: 选择外观可爱、颜色吸引孩子的定位器,增加孩子佩戴的意愿。 考虑设备的耐用性和抗摔、防水等性能,以确保设备能够经受住孩子日常活动的考验。 四、UWB儿童定位器的未来展望 技术进步与集成功能: 随着UWB技术的不断进步,未来的儿童定位器将提供更准确、更实时的定位信息。 除了定位和通讯功能,定位器还可能集成健康监测、学习辅导等功能于一体。例如,通过内置的传感器监测孩子的体温、心率等健康数据,或者提供简单的在线学习资源。 智能分析与预测: 通过大数据和AI技术,未来的儿童定位器可以分析孩子的活动习惯,预测可能存在的安全隐患,并及时提醒家长。 例如,如果设备检测到孩子经常在某个时间段出现在一个不安全的区域,它会向家长发出警报,建议采取措施确保孩子的安全。 更丰富的交互方式: 除了传统的语音和文字通讯,未来的儿童定位器还可能支持图像传输、视频通话等功能,让家长能够更直观地了解孩子的情况。 通过增强现实(AR)技术,孩子可以通过定位器与虚拟角色进行互动,增加学习的趣味性和互动性。 个性化定制与成长记录: 未来的儿童定位器可能会根据孩子的年龄、性别和兴趣提供个性化的功能和界面。 设备可以记录孩子的成长轨迹,如去过的地方、与家人的互动等,为家长提供一个宝贵的回忆和成长记录工具。 可持续性与环保: 随着对可持续性和环保的关注度不断提高,未来的儿童定位器可能会采用更加环保的材料和生产方式。 同时,通过设计更长的使用寿命和可循环利用的配件,减少电子废弃物对环境的影响。 五、结语 选择一款合适的儿童定位器是关心孩子安全的重要一步。而UWB儿童定位器追踪器凭借其独特的技术优势和丰富的功能特点,正成为越来越多家长的选择。让我们共同期待未来更加智能、安全的儿童定位器,为孩子们的健康成长保驾护航。
查看详情 查看详情
上一页
1
2
...
257

地址:深圳市宝安区西乡街道麻布社区宝安互联网产业基地A区6栋7栋7706

邮箱:Sales@ferry-semi.com

版权所有©2020  深圳市飞睿科技有限公司  粤ICP备2020098907号    飞睿科技微波雷达wifi模块网站地图