这是描述信息
兆易创新GD32-GigaDevice-兆易创新代理

兆易创新GD32F103RCT6-GD32 ARM Cortex-M3 Microcontroller

兆易创新GD32F103RCT6-GD32 ARM Cortex-M3 Microcontroller GigaDevice Semiconductor Inc. GD32F103xx ARM® Cortex™-M3 32-bit MCU Datasheet General description The GD32F103xx device is a 32-bit general-purpose microcontroller based on the ARM® Cortex™-M3 RISC core with best ratio in terms of processing power, reduced power consumption and peripheral set. The Cortex™-M3 is a next generation processor core which is tightly coupled with a Nested Vectored Interrupt Controller (NVIC), SysTick timer and advanced debug support. The GD32F103xx device incorporates the ARM® Cortex™-M3 32-bit processor core operating at 108 MHz frequency with Flash accesses zero wait states to obtain maximum efficiency. It provides up to 3 MB on-chip Flash memory and up to 96 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer up to three 12-bit ADCs, up to two 12-bit DACs, up to ten general 16-bit timers, two basic timers plus two PWM advanced timer, as well as standard and advanced communication interfaces: up to three SPIs, two I2Cs, three USARTs, two UARTs, two I2Ss, an USBD, a CAN and a SDIO. The device operates from a 2.6 to 3.6 V power supply and available in –40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications. The above features make the GD32F103xx devices suitable for a wide range of applications, especially in areas such as industrial control, motor drives, power monitor and alarm systems, consumer and handheld equipment, POS, vehicle GPS, video intercom, PC peripherals and so on. Device information Table 2-1. GD32F103xx devices features and peripheral list   Part Number GD32F103xx   T4 T6 T8 TB C4 C6 C8 CB R4 R6 R8 RB V8 VB Flash (KB) 16 32 64 128 16 32 64 128 16 32 64 128 64 128 SRAM (KB) 6 10 20 20 6 10 20 20 6 10 20 20 20 20 Timers General timer(16- bit)   2 (1-2)   2 (1-2)   3 (1-3)   3 (1-3)   2 (1-2)   2 (1-2)   3 (1-3)   3 (1-3)   2 (1-2)   2 (1-2)   3 (1-3)   3 (1-3)   3 (1-3)   3 (1-3)   Advanced timer(16- bit)   1 (0)   1 (0)   1 (0)   1 (0)   1 (0)   1 (0)   1 (0)   1 (0)   1 (0)   1 (0)   1 (0)   1 (0)   1 (0)   1 (0)   SysTick 1 1 1 1 1 1 1 1 1 1 1 1 1 1   Watchdog 2 2 2 2 2 2 2 2 2 2 2 2 2 2   RTC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Connectivity   USART 2 (0-1) 2 (0-1) 2 (0-1) 2 (0-1) 2 (0-1) 2 (0-1) 3 (0-2) 3 (0-2) 2 (0-1) 2 (0-1) 3 (0-2) 3 (0-2) 3 (0-2) 3 (0-2)     I2C 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 2 (0-1) 2 (0-1) 1 (0) 1 (0) 2 (0-1) 2 (0-1) 2 (0-1) 2 (0-1)     SPI 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 2 (0-1) 2 (0-1)
兆易创新GD32-GigaDevice-兆易创新代理
产品描述

兆易创新GD32F103RCT6-GD32 ARM Cortex-M3 Microcontroller

GigaDevice Semiconductor Inc.
GD32F103xx
ARM® Cortex™-M3 32-bit MCU
Datasheet

General description

The GD32F103xx device is a 32-bit general-purpose microcontroller based on the ARM® Cortex™-M3 RISC core with best ratio in terms of processing power, reduced power consumption and peripheral set. The Cortex™-M3 is a next generation processor core which is tightly coupled with a Nested Vectored Interrupt Controller (NVIC), SysTick timer and advanced debug support.
The GD32F103xx device incorporates the ARM® Cortex™-M3 32-bit processor core operating at 108 MHz frequency with Flash accesses zero wait states to obtain maximum efficiency. It provides up to 3 MB on-chip Flash memory and up to 96 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer up to three 12-bit ADCs, up to two 12-bit DACs, up to ten general 16-bit timers, two basic timers plus two PWM advanced timer, as well as standard and advanced communication interfaces: up to three SPIs, two I2Cs, three USARTs, two UARTs, two I2Ss, an USBD, a CAN and a SDIO.
The device operates from a 2.6 to 3.6 V power supply and available in –40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications.
The above features make the GD32F103xx devices suitable for a wide range of applications, especially in areas such as industrial control, motor drives, power monitor and alarm systems, consumer and handheld equipment, POS, vehicle GPS, video intercom, PC peripherals and so on.

Device information

Table 2-1. GD32F103xx devices features and peripheral list

 

Part Number

GD32F103xx

 

T4

T6

T8

TB

C4

C6

C8

CB

R4

R6

R8

RB

V8

VB

Flash (KB)

16

32

64

128

16

32

64

128

16

32

64

128

64

128

SRAM (KB)

6

10

20

20

6

10

20

20

6

10

20

20

20

20

Timers

General timer(16-

bit)

 

2

(1-2)

 

2

(1-2)

 

3

(1-3)

 

3

(1-3)

 

2

(1-2)

 

2

(1-2)

 

3

(1-3)

 

3

(1-3)

 

2

(1-2)

 

2

(1-2)

 

3

(1-3)

 

3

(1-3)

 

3

(1-3)

 

3

(1-3)

 

Advanced timer(16-

bit)

 

1

(0)

 

1

(0)

 

1

(0)

 

1

(0)

 

1

(0)

 

1

(0)

 

1

(0)

 

1

(0)

 

1

(0)

 

1

(0)

 

1

(0)

 

1

(0)

 

1

(0)

 

1

(0)

 

SysTick

1

1

1

1

1

1

1

1

1

1

1

1

1

1

 

Watchdog

2

2

2

2

2

2

2

2

2

2

2

2

2

2

 

RTC

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Connectivity

 

USART

2

(0-1)

2

(0-1)

2

(0-1)

2

(0-1)

2

(0-1)

2

(0-1)

3

(0-2)

3

(0-2)

2

(0-1)

2

(0-1)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

 

 

I2C

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

2

(0-1)

2

(0-1)

1

(0)

1

(0)

2

(0-1)

2

(0-1)

2

(0-1)

2

(0-1)

 

 

SPI

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

2

(0-1)

2

(0-1)

1

(0)

1

(0)

2

(0-1)

2

(0-1)

2

(0-1)

2

(0-1)

 

CAN

1

1

1

1

1

1

1

1

1

1

1

1

1

1

 

USBD

1

1

1

1

1

1

1

1

1

1

1

1

1

1

GPIO

26

26

26

26

37

37

37

37

51

51

51

51

80

80

EXMC

0

0

0

0

0

0

0

0

0

0

0

0

1

1

EXTI

16

16

16

16

16

16

16

16

16

16

16

16

16

16

ADC

Units

2

2

2

2

2

2

2

2

2

2

2

2

2

2

 

Channels

10

10

10

10

10

10

10

10

16

16

16

16

16

16

Package

QFN36

LQFP48

LQFP64

LQFP100

 

 

Part Number

GD32F103xx

 

RC

RD

RE

RF

RG

RI

RK

VC

VD

VE

VF

VG

VI

VK

Flash (KB)

256

384

512

768

1024

2048

3072

256

384

512

768

1024

2048

3072

SRAM (KB)

48

64

64

96

96

96

96

48

64

64

96

96

96

96

Timers

General timer(16-

bit)

 

4

(1-4)

 

4

(1-4)

 

4

(1-4)

 

10

(1-4,8-13)

 

10

(1-4,8-13)

 

10

(1-4,8-13)

 

10

(1-4,8-13)

 

4

(1-4)

 

4

(1-4)

 

4

(1-4)

 

10

(1-4,8-13)

 

10

(1-4,8-13)

 

10

(1-4,8-13)

 

10

(1-4,8-13)

 

Advanced

timer(16- bit)

 

2

(0,7)

 

2

(0,7)

 

2

(0,7)

 

2

(0,7)

 

2

(0,7)

 

2

(0,7)

 

2

(0,7)

 

2

(0,7)

 

2

(0,7)

 

2

(0,7)

 

2

(0,7)

 

2

(0,7)

 

2

(0,7)

 

2

(0,7)

 

SysTick

1

1

1

1

1

1

1

1

1

1

1

1

1

1

 

Basic timer(16-

bit)

 

2

(5-6)

 

2

(5-6)

 

2

(5-6)

 

2

(5-6)

 

2

(5-6)

 

2

(5-6)

 

2

(5-6)

 

2

(5-6)

 

2

(5-6)

 

2

(5-6)

 

2

(5-6)

 

2

(5-6)

 

2

(5-6)

 

2

(5-6)

 

Watchdog

2

2

2

2

2

2

2

2

2

2

2

2

2

2

 

RTC

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Connectivity

USART

3

3

3

3

3

3

3

3

3

3

3

3

3

3

 

UART

2

2

2

2

2

2

2

2

2

2

2

2

2

2

 

I2C

2

2

2

2

2

2

2

2

2

2

2

2

2

2

 

 

SPI

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

 

CAN

1

1

1

1

1

1

1

1

1

1

1

1

1

1

 

USBD

1

1

1

1

1

1

1

1

1

1

1

1

1

1

 

 

I2S

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

 

SDIO

1

1

1

1

1

1

1

1

1

1

1

1

1

1

GPIO

51

51

51

51

51

51

51

80

80

80

80

80

80

80

EXMC

0

0

0

0

0

0

0

1

1

1

1

1

1

1

EXTI

16

16

16

16

16

16

16

16

16

16

16

16

16

16

ADC

Units

3

3

3

3

3

3

3

3

3

3

3

3

3

3

 

Channels

16

16

16

16

16

16

16

16

16

16

16

16

16

16

DAC

2

2

2

2

2

2

2

2

2

2

2

2

2

2

Package

LQFP64

LQFP100

 

 

Part Number

GD32F103xx

 

ZC

ZD

ZE

ZF

ZG

ZI

ZK

Flash (KB)

256

384

512

768

1024

2048

3072

SRAM (KB)

48

64

64

96

96

96

96

Timers

General

timer(16-bit)

4

(1-4)

4

(1-4)

4

(1-4)

10

(1-4,8-13)

10

(1-4,8-13)

10

(1-4,8-13)

10

(1-4,8-13)

 

Advanced

timer(16-bit)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

 

SysTick

1

1

1

1

1

1

1

 

Basic timer(16-

bit)

2

(5-6)

2

(5-6)

2

(5-6)

2

(5-6)

2

(5-6)

2

(5-6)

2

(5-6)

 

Watchdog

2

2

2

2

2

2

2

 

RTC

1

1

1

1

1

1

1

Connectivity

USART

3

3

3

3

3

3

3

 

UART

2

2

2

2

2

2

2

 

I2C

2

2

2

2

2

2

2

 

 

SPI

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

 

CAN

1

1

1

1

1

1

1

 

USBD

1

1

1

1

1

1

1

 

 

I2S

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

 

SDIO

1

1

1

1

1

1

1

GPIO

112

112

112

112

112

112

112

EXMC

1

1

1

1

1

1

1

EXTI

16

16

16

16

16

16

16

 

ADC

Units

3

3

3

3

3

3

3

 

Channels

21

21

21

21

21

21

21

DAC

2

2

2

2

2

2

2

Package

LQFP144

 

Memory map

Table 2-4. GD32F103xx memory map

Pre-defined

Regions

 

Bus

 

Address

 

Peripherals

External

device

 

 

 

 

AHB

 

0xA000 0000 - 0xA000 0FFF

 

EXMC - SWREG

 

 

 

External RAM

 

0x9000 0000 - 0x9FFF FFFF

EXMC - PC CARD

 

 

0x7000 0000 - 0x8FFF FFFF

EXMC - NAND

 

 

 

0x6000 0000 - 0x6FFF FFFF

EXMC -

NOR/PSRAM/SRA M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Peripheral

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AHB

0x5000 0000 - 0x5003 FFFF

Reserved

 

 

0x4008 0000 - 0x4FFF FFFF

Reserved

 

 

0x4004 0000 - 0x4007 FFFF

Reserved

 

 

0x4002 BC00 - 0x4003 FFFF

Reserved

 

 

0x4002 B000 - 0x4002 BBFF

Reserved

 

 

0x4002 A000 - 0x4002 AFFF

Reserved

 

 

0x4002 8000 - 0x4002 9FFF

Reserved

 

 

0x4002 6800 - 0x4002 7FFF

Reserved

 

 

0x4002 6400 - 0x4002 67FF

Reserved

 

 

0x4002 6000 - 0x4002 63FF

Reserved

 

 

0x4002 5000 - 0x4002 5FFF

Reserved

 

 

0x4002 4000 - 0x4002 4FFF

Reserved

 

 

0x4002 3C00 - 0x4002 3FFF

Reserved

 

 

0x4002 3800 - 0x4002 3BFF

Reserved

 

 

0x4002 3400 - 0x4002 37FF

Reserved

 

 

0x4002 3000 - 0x4002 33FF

CRC

 

 

0x4002 2C00 - 0x4002 2FFF

Reserved

 

 

0x4002 2800 - 0x4002 2BFF

Reserved

 

 

0x4002 2400 - 0x4002 27FF

Reserved

 

 

0x4002 2000 - 0x4002 23FF

FMC

 

 

0x4002 1C00 - 0x4002 1FFF

Reserved

 

 

0x4002 1800 - 0x4002 1BFF

Reserved

 

 

0x4002 1400 - 0x4002 17FF

Reserved

 

 

0x4002 1000 - 0x4002 13FF

RCU

 

 

0x4002 0C00 - 0x4002 0FFF

Reserved

 

 

0x4002 0800 - 0x4002 0BFF

Reserved

 

 

0x4002 0400 - 0x4002 07FF

DMA1

 

 

0x4002 0000 - 0x4002 03FF

DMA0

 

 

0x4001 8400 - 0x4001 FFFF

Reserved

 

Pre-defined

Regions

 

Bus

 

Address

 

Peripherals

 

 

0x4001 8000 - 0x4001 83FF

SDIO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APB2

0x4001 7C00 - 0x4001 7FFF

Reserved

 

 

0x4001 7800 - 0x4001 7BFF

Reserved

 

 

0x4001 7400 - 0x4001 77FF

Reserved

 

 

0x4001 7000 - 0x4001 73FF

Reserved

 

 

0x4001 6C00 - 0x4001 6FFF

Reserved

 

 

0x4001 6800 - 0x4001 6BFF

Reserved

 

 

0x4001 5C00 - 0x4001 67FF

Reserved

 

 

0x4001 5800 - 0x4001 5BFF

Reserved

 

 

0x4001 5400 - 0x4001 57FF

TIMER10

 

 

0x4001 5000 - 0x4001 53FF

TIMER9

 

 

0x4001 4C00 - 0x4001 4FFF

TIMER8

 

 

0x4001 4800 - 0x4001 4BFF

Reserved

 

 

0x4001 4400 - 0x4001 47FF

Reserved

 

 

0x4001 4000 - 0x4001 43FF

Reserved

 

 

0x4001 3C00 - 0x4001 3FFF

ADC2

 

 

0x4001 3800 - 0x4001 3BFF

USART0

 

 

0x4001 3400 - 0x4001 37FF

TIMER7

 

 

0x4001 3000 - 0x4001 33FF

SPI0

 

 

0x4001 2C00 - 0x4001 2FFF

TIMER0

 

 

0x4001 2800 - 0x4001 2BFF

ADC1

 

 

0x4001 2400 - 0x4001 27FF

ADC0

 

 

0x4001 2000 - 0x4001 23FF

GPIOG

 

 

0x4001 1C00 - 0x4001 1FFF

GPIOF

 

 

0x4001 1800 - 0x4001 1BFF

GPIOE

 

 

0x4001 1400 - 0x4001 17FF

GPIOD

 

 

0x4001 1000 - 0x4001 13FF

GPIOC

 

 

0x4001 0C00 - 0x4001 0FFF

GPIOB

 

 

0x4001 0800 - 0x4001 0BFF

GPIOA

 

 

0x4001 0400 - 0x4001 07FF

EXTI

 

 

0x4001 0000 - 0x4001 03FF

AFIO

 

 

 

 

 

 

 

APB1

0x4000 CC00 - 0x4000 FFFF

Reserved

 

 

0x4000 C800 - 0x4000 CBFF

Reserved

 

 

0x4000 C400 - 0x4000 C7FF

Reserved

 

 

0x4000 C000 - 0x4000 C3FF

Reserved

 

 

0x4000 8000 - 0x4000 BFFF

Reserved

 

 

0x4000 7C00 - 0x4000 7FFF

Reserved

 

 

0x4000 7800 - 0x4000 7BFF

Reserved

 

 

0x4000 7400 - 0x4000 77FF

DAC

 

 

0x4000 7000 - 0x4000 73FF

PMU

 

Pre-defined

Regions

 

Bus

 

Address

 

Peripherals

 

 

0x4000 6C00 - 0x4000 6FFF

BKP

 

 

0x4000 6800 - 0x4000 6BFF

Reserved

 

 

0x4000 6400 - 0x4000 67FF

CAN0

 

 

 

0x4000 6000 - 0x4000 63FF

Shared USBD/CAN

SRAM 512 bytes

 

 

0x4000 5C00 - 0x4000 5FFF

USBD

 

 

0x4000 5800 - 0x4000 5BFF

I2C1

 

 

0x4000 5400 - 0x4000 57FF

I2C0

 

 

0x4000 5000 - 0x4000 53FF

UART4

 

 

0x4000 4C00 - 0x4000 4FFF

UART3

 

 

0x4000 4800 - 0x4000 4BFF

USART2

 

 

0x4000 4400 - 0x4000 47FF

USART1

 

 

0x4000 4000 - 0x4000 43FF

Reserved

 

 

0x4000 3C00 - 0x4000 3FFF

SPI2/I2S2

 

 

0x4000 3800 - 0x4000 3BFF

SPI1/I2S1

 

 

0x4000 3400 - 0x4000 37FF

Reserved

 

 

0x4000 3000 - 0x4000 33FF

FWDGT

 

 

0x4000 2C00 - 0x4000 2FFF

WWDGT

 

 

0x4000 2800 - 0x4000 2BFF

RTC

 

 

0x4000 2400 - 0x4000 27FF

Reserved

 

 

0x4000 2000 - 0x4000 23FF

TIMER13

 

 

0x4000 1C00 - 0x4000 1FFF

TIMER12

 

 

0x4000 1800 - 0x4000 1BFF

TIMER11

 

 

0x4000 1400 - 0x4000 17FF

TIMER6

 

 

0x4000 1000 - 0x4000 13FF

TIMER5

 

 

0x4000 0C00 - 0x4000 0FFF

TIMER4

 

 

0x4000 0800 - 0x4000 0BFF

TIMER3

 

 

0x4000 0400 - 0x4000 07FF

TIMER2

 

 

0x4000 0000 - 0x4000 03FF

TIMER1

 

 

 

 

SRAM

 

 

 

 

AHB

0x2007 0000 - 0x3FFF FFFF

Reserved

 

 

0x2006 0000 - 0x2006 FFFF

Reserved

 

 

0x2003 0000 - 0x2005 FFFF

Reserved

 

 

0x2002 0000 - 0x2002 FFFF

Reserved

 

 

0x2001 C000 - 0x2001 FFFF

Reserved

 

 

0x2001 8000 - 0x2001 BFFF

Reserved

 

 

0x2000 0000 - 0x2001 7FFF

SRAM

 

 

Code

 

 

AHB

0x1FFF F810 - 0x1FFF FFFF

Reserved

 

 

0x1FFF F800 - 0x1FFF F80F

Option Bytes

 

 

0x1FFF B000 - 0x1FFF F7FF

Boot loader

 

 

0x1FFF 7A10 - 0x1FFF AFFF

Reserved

 

Pre-defined

Regions

 

Bus

 

Address

 

Peripherals

 

 

0x1FFF 7800 - 0x1FFF 7A0F

Reserved

 

 

0x1FFF 0000 - 0x1FFF 77FF

Reserved

 

 

0x1FFE C010 - 0x1FFE FFFF

Reserved

 

 

0x1FFE C000 - 0x1FFE C00F

Reserved

 

 

0x1001 0000 - 0x1FFE BFFF

Reserved

 

 

0x1000 0000 - 0x1000 FFFF

Reserved

 

 

0x083C 0000 - 0x0FFF FFFF

Reserved

 

 

0x0830 0000 - 0x083B FFFF

Reserved

 

 

0x0800 0000 - 0x082F FFFF

Main Flash

 

 

0x0030 0000 - 0x07FF FFFF

Reserved

 

 

 

0x0000 0000 - 0x002F FFFF

Aliased to Main

Flash or Boot loader

 

GD32F103Zx LQFP144 pin definitions

Table 2-5. GD32F103Zx LQFP144 pin definitions

 

 

Pin Name

 

 

Pins

 

 

Pin Type(1)

 

 

I/O Level(2)

 

 

Functions description

 

PE2

 

1

 

I/O

 

5VT

Default: PE2

Alternate: TRACECK, EXMC_A23

 

PE3

 

2

 

I/O

 

5VT

Default: PE3

Alternate: TRACED0, EXMC_A19

 

PE4

 

3

 

I/O

 

5VT

Default: PE4

Alternate:TRACED1, EXMC_A20

 

PE5

 

4

 

I/O

 

5VT

Default: PE5 Alternate:TRACED2, EXMC_A21

Remap: TIMER8_CH0(3)

 

PE6

 

5

 

I/O

 

5VT

Default: PE6

Alternate:TRACED3, EXMC_A22 Remap: TIMER8_CH1(3)

VBAT

6

P

 

Default: VBAT

PC13- TAMPER-

RTC

 

7

 

I/O

 

 

Default: PC13

Alternate: TAMPER-RTC

PC14- OSC32IN

 

8

 

I/O

 

Default: PC14 Alternate: OSC32IN

PC15- OSC32OUT

 

9

 

I/O

 

Default: PC15 Alternate: OSC32OUT

 

PF0

 

10

 

I/O

 

5VT

Default: PF0 Alternate: EXMC_A0

 

PF1

 

11

 

I/O

 

5VT

Default: PF1

Alternate: EXMC_A1

 

PF2

 

12

 

I/O

 

5VT

Default: PF2 Alternate: EXMC_A2

 

PF3

 

13

 

I/O

 

5VT

Default: PF3

Alternate: EXMC_A3

 

PF4

 

14

 

I/O

 

5VT

Default: PF4 Alternate: EXMC_A4

 

PF5

 

15

 

I/O

 

5VT

Default: PF5

Alternate: EXMC_A5

VSS_5

16

P

 

Default: VSS_5

VDD_5

17

P

 

Default: VDD_5

PF6

18

I/O

 

Default: PF6

 

 

 

Pin Name

 

 

Pins

 

 

Pin Type(1)

 

 

I/O Level(2)

 

 

Functions description

 

 

 

 

Alternate: ADC2_IN4, EXMC_NIORD

Remap: TIMER9_CH0(3)

 

PF7

 

19

 

I/O

 

Default: PF7

Alternate: ADC2_IN5, EXMC_NREG Remap: TIMER10_CH0(3)

 

PF8

 

20

 

I/O

 

Default: PF8

Alternate: ADC2_IN6, EXMC_NIOWR Remap: TIMER12_CH0(3)

 

PF9

 

21

 

I/O

 

Default: PF9

Alternate: ADC2_IN7, EXMC_CD Remap: TIMER13_CH0(3)

 

PF10

 

22

 

I/O

 

Default: PF10

Alternate: ADC2_IN8, EXMC_INTR

 

OSCIN

 

23

 

I

 

Default: OSCIN

Remap: PD0

 

OSCOUT

 

24

 

O

 

Default: OSCOUT

Remap: PD1

NRST

25

I/O

 

Default: NRST

 

PC0

 

26

 

I/O

 

Default: PC0

Alternate: ADC012_IN10

 

PC1

 

27

 

I/O

 

Default: PC1

Alternate: ADC012_IN11

 

PC2

 

28

 

I/O

 

Default: PC2

Alternate: ADC012_IN12

 

PC3

 

29

 

I/O

 

Default: PC3

Alternate: ADC012_IN13

VSSA

30

P

 

Default: VSSA

VREF-

31

P

 

Default: VREF-

VREF+

32

P

 

Default: VREF+

VDDA

33

P

 

Default: VDDA

 

PA0-WKUP

 

34

 

I/O

 

Default: PA0

Alternate: WKUP, USART1_CTS, ADC012_IN0, TIMER1_CH0, TIMER1_ETI, TIMER4_CH0, TIMER7_ETI

 

PA1

 

35

 

I/O

 

Default: PA1

Alternate: USART1_RTS, ADC012_IN1, TIMER1_CH1, TIMER4_CH1

 

PA2

 

36

 

I/O

 

Default: PA2

Alternate: USART1_TX, ADC012_IN2, TIMER1_CH2, TIMER4_CH2, TIMER8_CH0(3)

 

PA3

 

37

 

I/O

 

Default: PA3

Alternate: USART1_RX, ADC012_IN3, TIMER1_CH3, TIMER4_CH3, TIMER8_CH1(3)

 

 

 

Pin Name

 

 

Pins

 

 

Pin Type(1)

 

 

I/O Level(2)

 

 

Functions description

VSS_4

38

P

 

Default: VSS_4

VDD_4

39

P

 

Default: VDD_4

 

 

PA4

 

 

40

 

 

I/O

 

Default: PA4

Alternate: SPI0_NSS, USART1_CK, ADC01_IN4, DAC_OUT0

Remap:SPI2_NSS, I2S2_WS

 

PA5

 

41

 

I/O

 

Default: PA5

Alternate: SPI0_SCK, ADC01_IN5, DAC_OUT1

 

 

PA6

 

 

42

 

 

I/O

 

Default: PA6

Alternate: SPI0_MISO, ADC01_IN6, TIMER2_CH0, TIMER7_BRKIN, TIMER12_CH0(3)

Remap: TIMER0_BRKIN

 

 

PA7

 

 

43

 

 

I/O

 

Default: PA7

Alternate: SPI0_MOSI, ADC01_IN7, TIMER2_CH1, TIMER7_CH0_ON, TIMER13_CH0(3)

Remap: TIMER0_CH0_ON

 

PC4

 

44

 

I/O

 

Default: PC4

Alternate: ADC01_IN14

 

PC5

 

45

 

I/O

 

Default: PC5

Alternate: ADC01_IN15

 

PB0

 

46

 

I/O

 

Default: PB0

Alternate: ADC01_IN8, TIMER2_CH2, TIMER7_CH1_ON

Remap: TIMER0_CH1_ON

 

PB1

 

47

 

I/O

 

Default: PB1

Alternate: ADC01_IN9, TIMER2_CH3, TIMER7_CH2_ON

Remap: TIMER0_CH2_ON

PB2

48

I/O

5VT

Default: PB2, BOOT1

 

PF11

 

49

 

I/O

 

5VT

Default: PF11

Alternate: EXMC_NIOS16

 

PF12

 

50

 

I/O

 

5VT

Default: PF12 Alternate: EXMC_A6

VSS_6

51

P

 

Default: VSS_6

VDD_6

52

P

 

Default: VDD_6

 

PF13

 

53

 

I/O

 

5VT

Default: PF13 Alternate: EXMC_A7

 

PF14

 

54

 

I/O

 

5VT

Default: PF14

Alternate: EXMC_A8

 

PF15

 

55

 

I/O

 

5VT

Default: PF15 Alternate: EXMC_A9

 

PG0

 

56

 

I/O

 

5VT

Default: PG0

Alternate: EXMC_A10

PG1

57

I/O

5VT

Default: PG1

 

 

 

Pin Name

 

 

Pins

 

 

Pin Type(1)

 

 

I/O Level(2)

 

 

Functions description

 

 

 

 

Alternate: EXMC_A11

 

PE7

 

58

 

I/O

 

5VT

Default: PE7

Alternate: EXMC_D4 Remap: TIMER0_ETI

 

PE8

 

59

 

I/O

 

5VT

Default: PE8 Alternate: EXMC_D5

Remap: TIMER0_CH0_ON

 

PE9

 

60

 

I/O

 

5VT

Default: PE9 Alternate: EXMC_D6

Remap: TIMER0_CH0

VSS_7

61

P

 

Default: VSS_7

VDD_7

62

P

 

Default: VDD_7

 

PE10

 

63

 

I/O

 

5VT

Default: PE10 Alternate: EXMC_D7

Remap: TIMER0_CH1_ON

 

PE11

 

64

 

I/O

 

5VT

Default: PE11

Alternate: EXMC_D8 Remap: TIMER0_CH1

 

PE12

 

65

 

I/O

 

5VT

Default: PE12 Alternate: EXMC_D9

Remap: TIMER0_CH2_ON

 

PE13

 

66

 

I/O

 

5VT

Default: PE13 Alternate: EXMC_D10

Remap: TIMER0_CH2

 

PE14

 

67

 

I/O

 

5VT

Default: PE14 Alternate: EXMC_D11

Remap: TIMER0_CH3

 

PE15

 

68

 

I/O

 

5VT

Default: PE15 Alternate: EXMC_D12

Remap: TIMER0_BRKIN

 

PB10

 

69

 

I/O

 

5VT

Default: PB10

Alternate: I2C1_SCL, USART2_TX Remap: TIMER1_CH2

 

PB11

 

70

 

I/O

 

5VT

Default: PB11

Alternate: I2C1_SDA, USART2_RX Remap: TIMER1_CH3

VSS_1

71

P

 

Default: VSS_1

VDD_1

72

P

 

Default: VDD_1

 

PB12

 

73

 

I/O

 

5VT

Default: PB12

Alternate: SPI1_NSS, I2C1_SMBA, USART2_CK, TIMER0_BRKIN, I2S1_WS

PB13

74

I/O

5VT

Default: PB13

 

 

 

Pin Name

 

 

Pins

 

 

Pin Type(1)

 

 

I/O Level(2)

 

 

Functions description

 

 

 

 

Alternate: SPI1_SCK, USART2_CTS, TIMER0_CH0_ON,

I2S1_CK

 

PB14

 

75

 

I/O

 

5VT

Default: PB14

Alternate: SPI1_MISO, USART2_RTS, TIMER0_CH1_ON, TIMER11_CH0(3)

 

PB15

 

76

 

I/O

 

5VT

Default: PB15

Alternate: SPI1_MOSI, TIMER0_CH2_ON, I2S1_SD, TIMER11_CH1(3)

 

PD8

 

77

 

I/O

 

5VT

Default: PD8 Alternate: EXMC_D13

Remap: USART2_TX

 

PD9

 

78

 

I/O

 

5VT

Default: PD9 Alternate: EXMC_D14

Remap: USART2_RX

 

PD10

 

79

 

I/O

 

5VT

Default: PD10 Alternate: EXMC_D15

Remap: USART2_CK

 

PD11

 

80

 

I/O

 

5VT

Default: PD11 Alternate: EXMC_A16

Remap: USART2_CTS

 

PD12

 

81

 

I/O

 

5VT

Default: PD12 Alternate: EXMC_A17

Remap: TIMER3_CH0, USART2_RTS

 

PD13

 

82

 

I/O

 

5VT

Default: PD13

Alternate: EXMC_A18 Remap: TIMER3_CH1

VSS_8

83

P

 

Default: VSS_8

VDD_8

84

P

 

Default: VDD_8

 

PD14

 

85

 

I/O

 

5VT

Default: PD14 Alternate: EXMC_D0

Remap: TIMER3_CH2

 

PD15

 

86

 

I/O

 

5VT

Default: PD15 Alternate: EXMC_D1

Remap: TIMER3_CH3

 

PG2

 

87

 

I/O

 

5VT

Default: PG2

Alternate: EXMC_A12

 

PG3

 

88

 

I/O

 

5VT

Default: PG3

Alternate: EXMC_A13

 

PG4

 

89

 

I/O

 

5VT

Default: PG4

Alternate: EXMC_A14

 

PG5

 

90

 

I/O

 

5VT

Default: PG5

Alternate: EXMC_A15

 

 

 

Pin Name

 

 

Pins

 

 

Pin Type(1)

 

 

I/O Level(2)

 

 

Functions description

 

PG6

 

91

 

I/O

 

5VT

Default: PG6

Alternate: EXMC_INT1

 

PG7

 

92

 

I/O

 

5VT

Default: PG7

Alternate: EXMC_INT2

PG8

93

I/O

5VT

Default: PG8

VSS_9

94

P

 

Default: VSS_9

VDD_9

95

P

 

Default: VDD_9

 

PC6

 

96

 

I/O

 

5VT

Default: PC6

Alternate: I2S1_MCK, TIMER7_CH0, SDIO_D6

Remap: TIMER2_CH0

 

PC7

 

97

 

I/O

 

5VT

Default: PC7

Alternate: I2S2_MCK, TIMER7_CH1, SDIO_D7

Remap: TIMER2_CH1

 

PC8

 

98

 

I/O

 

5VT

Default: PC8

Alternate: TIMER7_CH2, SDIO_D0 Remap: TIMER2_CH2

 

PC9

 

99

 

I/O

 

5VT

Default: PC9

Alternate: TIMER7_CH3, SDIO_D1 Remap: TIMER2_CH3

 

PA8

 

100

 

I/O

 

5VT

Default: PA8

Alternate: USART0_CK, TIMER0_CH0, CK_OUT0

 

PA9

 

101

 

I/O

 

5VT

Default: PA9

Alternate: USART0_TX, TIMER0_CH1

 

PA10

 

102

 

I/O

 

5VT

Default: PA10

Alternate: USART0_RX, TIMER0_CH2

 

PA11

 

103

 

I/O

 

5VT

Default: PA11

Alternate: USART0_CTS, CAN0_RX, USBDM, TIMER0_CH3

 

PA12

 

104

 

I/O

 

5VT

Default: PA12

Alternate: USART0_RTS, CAN0_TX, TIMER0_ETI, USBDP

 

PA13

 

105

 

I/O

 

5VT

Default: JTMS, SWDIO

Remap: PA13

NC

106

 

 

-

VSS_2

107

P

 

Default: VSS_2

VDD_2

108

P

 

Default: VDD_2

 

PA14

 

109

 

I/O

 

5VT

Default: JTCK, SWCLK Remap: PA14

 

PA15

 

110

 

I/O

 

5VT

Default: JTDI

Alternate: SPI2_NSS, I2S2_WS

Remap: TIMER1_CH0, TIMER1_ETI, PA15, SPI0_NSS

 

PC10

 

111

 

I/O

 

5VT

Default: PC10

Alternate: UART3_TX, SDIO_D2

 

 

 

Pin Name

 

 

Pins

 

 

Pin Type(1)

 

 

I/O Level(2)

 

 

Functions description

 

 

 

 

Remap: USART2_TX, SPI2_SCK, I2S2_CK

 

PC11

 

112

 

I/O

 

5VT

Default: PC11

Alternate: UART3_RX, SDIO_D3 Remap: USART2_RX, SPI2_MISO

 

PC12

 

113

 

I/O

 

5VT

Default: PC12

Alternate: UART4_TX, SDIO_CK

Remap: USART2_CK, SPI2_MOSI, I2S2_SD

 

PD0

 

114

 

I/O

 

5VT

Default: PD0 Alternate: EXMC_D2

Remap: CAN0_RX

 

PD1

 

115

 

I/O

 

5VT

Default: PD1 Alternate: EXMC_D3

Remap: CAN0_TX

 

PD2

 

116

 

I/O

 

5VT

Default: PD2

Alternate: TIMER2_ETI, SDIO_CMD, UART4_RX

 

PD3

 

117

 

I/O

 

5VT

Default: PD3 Alternate: EXMC_CLK

Remap: USART1_CTS

 

PD4

 

118

 

I/O

 

5VT

Default: PD4 Alternate: EXMC_NOE

Remap: USART1_RTS

 

PD5

 

119

 

I/O

 

5VT

Default: PD5

Alternate: EXMC_NWE Remap: USART1_TX

VSS_10

120

 

 

Default: VSS_10

VDD_10

121

 

 

Default: VDD_10

 

PD6

 

122

 

I/O

 

5VT

Default: PD6

Alternate: EXMC_NWAIT Remap: USART1_RX

 

PD7

 

123

 

I/O

 

5VT

Default: PD7

Alternate: EXMC_NE0, EXMC_NCE1 Remap: USART1_CK

 

PG9

 

124

 

I/O

 

5VT

Default: PG9

Alternate: EXMC_NE1, EXMC_NCE2

 

PG10

 

125

 

I/O

 

5VT

Default: PG10

Alternate: EXMC_NCE3_0, EXMC_NE2

 

PG11

 

126

 

I/O

 

5VT

Default: PG11

Alternate: EXMC_NCE3_1

 

PG12

 

127

 

I/O

 

5VT

Default: PG12

Alternate: EXMC_NE3

 

PG13

 

128

 

I/O

 

5VT

Default: PG13 Alternate: EXMC_A24

 

 

 

Pin Name

 

 

Pins

 

 

Pin Type(1)

 

 

I/O Level(2)

 

 

Functions description

PG14

129

I/O

5VT

Default: PG14

Alternate: EXMC_A25

VSS_11

130

P

 

Default: VSS_11

VDD_11

131

P

 

Default: VDD_11

PG15

132

I/O

5VT

Default: PG15

 

PB3

 

133

 

I/O

 

5VT

Default: JTDO Alternate:SPI2_SCK, I2S2_CK

Remap: PB3, TRACESWO, TIMER1_CH1, SPI0_SCK

 

PB4

 

134

 

I/O

 

5VT

Default: NJTRST Alternate: SPI2_MISO

Remap: TIMER2_CH0, PB4, SPI0_MISO

 

PB5

 

135

 

I/O

 

Default: PB5

Alternate: I2C0_SMBA, SPI2_MOSI, I2S2_SD Remap: TIMER2_CH1, SPI0_MOSI

 

PB6

 

136

 

I/O

 

5VT

Default: PB6

Alternate: I2C0_SCL, TIMER3_CH0 Remap: USART0_TX

 

PB7

 

137

 

I/O

 

5VT

Default: PB7

Alternate: I2C0_SDA , TIMER3_CH1, EXMC_NADV

Remap: USART0_RX

BOOT0

138

I

 

Default: BOOT0

 

PB8

 

139

 

I/O

 

5VT

Default: PB8

Alternate: TIMER3_CH2, SDIO_D4, TIMER9_CH0(3) Remap: I2C0_SCL, CAN0_RX

 

PB9

 

140

 

I/O

 

5VT

Default: PB9

Alternate: TIMER3_CH3, SDIO_D5, TIMER10_CH0(3) Remap: I2C0_SDA, CAN0_TX

PE0

141

I/O

5VT

Default: PE0

Alternate: TIMER3_ETI, EXMC_NBL0

PE1

142

I/O

5VT

Default: PE1

Alternate: EXMC_NBL1

VSS_3

143

P

 

Default: VSS_3

VDD_3

144

P

 

Default: VDD_3

Notes:
(1)Type: I = input, O = output, P = power.
(2)I/O Level: 5VT = 5 V tolerant.
(3)Functions are available in GD32F103ZF/G/I/K devices.

ARM® Cortex™-M3 core

The Cortex™-M3 processor is the latest generation of ARM® processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.
32-bit ARM® Cortex™-M3 processor core
Up to 108 MHz operation frequency
Single-cycle multiplication and hardware divider
Integrated Nested Vectored Interrupt Controller (NVIC)
24-bit SysTick timer

The Cortex™-M3 processor is based on the ARMv7 architecture and supports both Thumb and Thumb-2 instruction sets. Some system peripherals listed below are also provided by Cortex™-M3:
Internal Bus Matrix connected with I-Code bus, D-Code bus, System bus, Private Peripheral Bus (PPB) and debug accesses.
Nested Vectored Interrupt Controller (NVIC).
Flash Patch and Breakpoint (FPB).
Data Watchpoint and Trace (DWT).
Instrumentation Trace Macrocell (ITM).
Embedded Trace Macrocell (ETM).
Serial Wire JTAG Debug Port (SWJ-DP).
Trace Port Interface Unit (TPIU).
Memory Protection Unit (MPU).


On-chip memory

Up to 3072 Kbytes of Flash memory
Up to 96 Kbytes of SRAM

The ARM® Cortex™-M3 processor is structured in Harvard architecture which can use separate buses to fetch instructions and load/store data. 3072 Kbytes of inner Flash and 96 Kbytes of inner SRAM at most is available for storing programs and data, both accessed (R/W) at CPU clock speed with zero wait states. The Table 2-4. GD32F103xx memory map shows the memory map of the GD32F103xx series of devices, including code, SRAM, peripheral, and other pre-defined regions.

Clock, reset and supply management

Internal 8 MHz factory-trimmed RC and external 4 to 16 MHz crystal oscillator
Internal 40 KHz RC calibrated oscillator and external 32.768 KHz crystal oscillator
Integrated system clock PLL
2.6 to 3.6 V application supply and I/Os
Supply Supervisor: POR (Power On Reset), PDR (Power Down Reset), and low voltage detector (LVD)
The Clock Control unit provides a range of frequencies and clock functions. These include an Internal 8M RC oscillator (IRC8M), a High Speed crystal oscillator (HXTAL), a Low Speed Internal 40K RC oscillator (IRC40K), a Low Speed crystal oscillator (LXTAL), a Phase Lock Loop (PLL), a HXTAL clock monitor, clock prescalers, clock multiplexers and clock gating circuitry. The frequency of AHB, APB2 and the APB1 domains can be configured by each prescaler. The maximum frequency of the AHB, APB2 and APB1 domains is 108 MHz/108 MHz/54 MHz. See Figure 2-8. GD32F103xx clock tree for details.
GD32F10x Reset Control includes the control of three kinds of reset: power reset, system reset and backup domain reset. The system reset resets the processor core and peripheral IP components except for the SW-DP controller and the Backup domain. Power-on reset (POR) and power-down reset (PDR) are always active, and ensures proper operation starting from/down to 2.6 V. The device remains in reset mode when VDD is below a specified threshold. The embedded low voltage detector (LVD) monitors the power supply, compares it to the voltage threshold and generates an interrupt as a warning message for leading the MCU into security.
Power supply schemes:
VDD range: 2.6 to 3.6 V, external power supply for I/Os and the internal regulator. Provided externally through VDD pins.
VSSA, VDDA range: 2.6 to 3.6 V, external analog power supplies for ADC, reset blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.
VBAT range: 1.8 to 3.6 V, power supply for RTC, external clock 32 KHz oscillator and backup registers (through power switch) when VDD is not present.

Boot modes

At startup, boot pins are used to select one of three boot options:
Boot from main flash memory (default)
Boot from system memory
Boot from on-chip SRAM

The boot loader is located in the internal boot ROM memory (system memory). It is used to reprogram the Flash memory by using USART0 (PA9 and PA10), if devices are GD32F103xF/G/I/K, USART1 (PA2 and PA3) is also available for boot functions. It also can

be used to transfer and update the Flash memory code, the data and the vector table sections. In default condition, boot from bank 0 of Flash memory is selected. It also supports to boot from bank 1 of Flash memory by setting a bit in option bytes.

Power saving modes

The MCU supports three kinds of power saving modes to achieve even lower power consumption. They are sleep mode, deep-sleep mode, and standby mode. These operating modes reduce the power consumption and allow the application to achieve the best balance between the CPU operating time, speed and power consumption.
Sleep mode
In sleep mode, only clock of Cortex™-M3 is off. All peripherals continue to operate and any interrupt/event can wake up the system.
Deep-sleep mode
In deep-sleep mode, all clocks in the 1.2V domain are off, and all of IRC8M, HXTAL and PLLs are disabled. Only the contents of SRAM and registers are retained. Any interrupt or wakeup event from EXTI lines can wake up the system from the deep-sleep mode including the 16 external lines, the RTC alarm, the LVD output, USB Wakeup and Ethernet Wakeup. When exiting the deep-sleep mode, the IRC8M is selected as the system clock.
Standby mode
In standby mode, the whole 1.2V domain is power off, the LDO is shut down, and all of IRC8M, HXTAL and PLL are disabled. The contents of SRAM and registers (except Backup registers) are lost. There are four wakeup sources for the Standby mode, including the external reset from NRST pin, the RTC alarm, the FWDGT reset, and the rising edge on WKUP pin.

Analog to digital converter (ADC)

12-bit SAR ADC
Up to 1 MSPS for 12-bit resolution
Analog input signal voltage range: VSSA to VDDA (2.6 to 3.6 V)
Temperature sensor

Up to three 12-bit multi-channel ADCs are integrated in the device. Each has a total of up to 21 multiplexed external channels. An analog watchdog block can be used to detect the channels, which are required to remain within a specific threshold window. A configurable channel management block of analog inputs also can be used to perform conversions in single, continuous, scan or discontinuous mode.
The ADCs can be triggered from the events generated by the general level 0 timers (TIMERx) or the advanced timers (TIMER0 and TIMER7) with internal connection. The temperature sensor generates a voltage that varies linearly with temperature. The analog supply voltage VDDA can vary from 2.6 V to 3.6 V. The output voltage of temperature sensor is internally connected to the ADC_IN16 input channel.

3.7.Digital to analog converter (DAC)

Two 12-bit DACs with independent output channels
8-bit or 12-bit mode in conjunction with the DMA controller

The two 12-bit buffered DACs are used to generate variable analog outputs. The DAC channels can be triggered by the timer or EXTI with DMA support. In dual DAC channel operation, conversions could be done independently or simultaneously. The maximum output value of the DAC is VREF+.

DMA

7 channel DMA0 controller and 5 channel DMA1 controller
Peripherals supported: Timers, ADC, SPIs, I2Cs, USARTs, DAC, I2S and SDIO

The direct memory access (DMA) controllers provide a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other system functions. Three types of access method are supported: peripheral to memory, memory to peripheral, memory to memory.
Each channel is connected to fixed hardware DMA requests. The priorities of DMA channel requests are determined by software configuration and hardware channel number. Transfer size of source and destination are independent and configurable.

General-purpose inputs/outputs (GPIOs)

Up to 112 fast GPIOs, all mappable on 16 external interrupt lines
Analog input/output configurable
Alternate function input/output configurable

There are up to 112 general purpose I/O pins (GPIO), named PA0 ~ PA15, PB0 ~ PB15, PC0
~ PC15, PD0 ~ PD15, PE0 ~ PE15, PF0 ~ PF15 and PG0 ~ PG15 for the device to implement logic input/output functions. Each GPIO port has related control and configuration registers to satisfy the requirements of specific applications. The external interrupt on the GPIO pins of the device have related control and configuration registers in the Interrupt/event Controller Unit (EXTI). The GPIO ports are pin-shared with other alternative functions (AFs) to obtain maximum flexibility on the package pins. The GPIO pins can be used as alternative functional pins by configuring the corresponding registers regardless of the AF input or output pins. Each of the GPIO pins can be configured by software as output (push-pull or open-drain), input, peripheral alternate function or analog mode. Each GPIO pin can be configured as pull-up, pull-down or no pull-up/pull-down. All GPIOs are high-current capable except for analog mode.

Timers and PWM generation

Up to two 16-bit advanced timer (TIMER0 & TIMER7), ten 16-bit general timers, and two 16-bit basic timer (TIMER5 & TIMER6)
Up to 4 independent channels of PWM, output compare or input capture for each and external trigger input
16-bit, motor control PWM advanced timer with programmable dead-time generation for output match
Encoder interface controller with two inputs using quadrature decoder
24-bit SysTick timer down counter
2 watchdog timers (Free watchdog timer and window watchdog timer)

The advanced timer (TIMER0 & TIMER7) can be seen as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable dead-time generation. It can also be used as a complete general timer. The 6 independent channels can be used for
Input capture
Output compare
PWM generation (edge-aligned or center-aligned counting modes)
Single pulse mode output

If configured as a general 16-bit timer, it can be synchronized with external signals or to interconnect with other general timers together which have the same architecture and features.
The general timer, known as TIMER1 ~ TIMER4, TIMER8 ~ TIMER10, TIMER11 ~ TIMER13 can be used for a variety of purposes including general timer, input signal pulse width measurement or output waveform generation such as a single pulse generation or PWM output, up to 4 independent channels for input capture/output compare. The general timer also supports an encoder interface with two inputs using quadrature decoder.
The basic timer, known as TIMER5 and TIMER6 are mainly used for DAC trigger generation. They can also be used as a simple 16-bit time base.
The GD32F103xx have two watchdog peripherals, free watchdog timer and window watchdog timer. They offer a combination of high safety level, flexibility of use and timing accuracy.
The free watchdog timer consists of an 8-stage prescaler and a 12-bit down-counter, it is clocked from an independent 40 KHz internal RC and as it operates independently of the main clock, it can operate in deep-sleep and standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management.
The window watchdog timer is based on a 7-bit down counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early wakeup interrupt capability and the counter can be frozen in

debug mode.

The SysTick timer is dedicated for OS, but could also be used as a standard down counter. The features are shown below:
A 24-bit down counter
Auto reload capability
Maskable system interrupt generation when the counter reaches 0
Programmable clock source


Real time clock (RTC)

32-bit up-counter with a programmable 20-bit prescaler
Alarm function
Interrupt and wake-up event

The real time clock is an independent timer which provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and an expected interrupt. The RTC features a 32-bit programmable counter for long-term measurement using the compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 KHz from external crystal oscillator.

Inter-integrated circuit (I2C)

Up to two I2C bus interfaces can support both master and slave mode with a frequency up to 400 KHz
Provide arbitration function, optional PEC (packet error checking) generation and checking
Supports 7-bit and 10-bit addressing mode and general call addressing mode

The I2C interface is an internal circuit allowing communication with an external I2C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line (SDA) and a serial clock line (SCL). The I2C module provides transfer rate of up to 100 KHz in standard mode and up to 400 KHz in fast mode. The I2C module also has an arbitration detect function to prevent the situation where more than one master attempts to transmit data to the I2C bus at the same time. A CRC-8 calculator is also provided in I2C interface to perform packet error checking for I2C data.

Serial peripheral interface (SPI)

Up to three SPI interfaces with a frequency of up to 18 MHz
Support both master and slave mode
Hardware CRC calculation and transmit automatic CRC error checking

The SPI interface uses 4 pins, among which are the serial data input and output lines (MISO & MOSI), the clock line (SCK) and the slave select line (NSS). Both SPIs can be served by the DMA controller. The SPI interface may be used for a variety of purposes, including simplex synchronous transfers on two lines with a possible bidirectional data line or reliable communication using CRC checking.

Universal synchronous asynchronous receiver transmitter (USART)
Up to three USARTs and two UARTs with operating frequency up to 6.75 MHz
Supports both asynchronous and clocked synchronous serial communication modes
IrDA SIR encoder and decoder support
LIN break generation and detection
USARTs support ISO 7816-3 compliant smart card interface

The USART (USART0, USART1 and USART2) and UART (UART3 & UART4) are used to
translate data between parallel and serial interfaces, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. It is also commonly used for RS-232 standard communication. The USART includes a programmable baud rate generator which is capable of dividing the system clock to produce a dedicated clock for the USART transmitter and receiver. The USART also supports DMA function for high speed data communication except UART4.

Inter-IC sound (I2S)

Two I2S bus Interfaces with sampling frequency from 8 KHz to 192 KHz
Support either master or slave mode

The Inter-IC sound (I2S) bus provides a standard communication interface for digital audio applications by 3-wire serial lines. GD32F103xx contain two I2S-bus interfaces that can be operated with 16/32 bit resolution in master or slave mode, pin multiplexed with SPI1 and SPI2. The audio sampling frequency from 8 KHz to 192 KHz is supported with less than 0.5% accuracy error.

Secure digital input and output card interface (SDIO)

Support SD2.0/SDIO2.0/MMC4.2 host interface

The Secure Digital Input and Output Card Interface (SDIO) provides access to external SD memory cards specifications version 2.0, SDIO card specification version 2.0 and multi-media card system specification version 4.2 with DMA supported. In addition, this interface is also compliant with CE-ATA digital protocol rev1.1.

Universal serial bus full-speed device (USBD)

One full-speed USB Interface with frequency up to 12 Mbit/s
Internal main PLL for USB CLK compliantly

The Universal Serial Bus (USB) is a 4-wire bus that supports communication between one or more devices. Full-speed peripheral is compliant with the USB 2.0 specification. The device controller enables 12 Mbit/s data exchange with a USB Host controller. Transaction formatting is performed by the hardware, including CRC generation and checking. The status of a completed USB transfer or error condition is indicated by status registers. An interrupt is also generated if enabled. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator) and the operating frequency divided from APB1 should be 12 MHz above.

Controller area network (CAN)

One CAN2.0B interface with communication frequency up to 1 Mbit/s
Internal main PLL for USB CLK compliantly

Controller area network (CAN) is a method for enabling serial communication in field bus. The CAN protocol has been used extensively in industrial automation and automotive applications. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three mailboxes for transmission and two FIFOs of three message deep for reception. It also provides 14 scalable/configurable identifier filter banks for selecting the incoming messages needed and discarding the others.

External memory controller (EXMC)

Supported external memory: SRAM, PSRAM, ROM and NOR-Flash, NAND Flash and CF card
Up to 16-bit data bus
Support interface with Motorola 6800 and Intel 8080 type LCD directly

External memory controller (EXMC) is an abbreviation of external memory controller. It is divided in to several sub-banks for external device support, each sub-bank has its own chip selection signal but at one time, only one bank can be accessed. The EXMC support code execution from external memory except NAND Flash and CF card. The EXMC also can be configured to interface with the most common LCD module of Motorola 6800 and Intel 8080 series and reduce the system cost and complexity.

Debug mode

Serial wire JTAG debug port (SWJ-DP)

The ARM® SWJ-DP Interface is embedded and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

3.21.Package and operation temperature

LQFP144 (GD32F103Zx), LQFP100 (GD32F103Vx), LQFP64 (GD32F103Rx), LQFP48 (GD32F103Cx) and QFN36 (GD32F103Tx)
Operation temperature range: -40°C to +85°C (industrial level)

扫二维码用手机看

飞睿无线定位测距uwb标签UWB芯片厂商UWB定位公司实现无缝定位的领跑者

在当今数字化世界中,定位技术的重要性越来越被广泛认知和应用。从室内导航到物流跟踪,无线测距UWB芯片的出现为各行各业带来了新的可能性。而在这个充满竞争的领域中,一家名为飞睿UWB定位公司的无线定位测距uwb标签UWB芯片厂商,凭借其先进的技术和创新能力,成功成为实现无缝定位的先进者。 UWB(Ultra-Wideband)是一种广泛应用于室内定位和跟踪的无线通信技术。相比传统的定位技术,如GPS或Wi-Fi,UWB具有更高的精度和定位准确性。这一技术利用短脉冲信号的传播时间来计算物体与基站之间的距离,从而实现高精度的定位。 飞睿UWB定位公司作为一家专注于UWB技术研发和应用的企业,不仅在无线定位测距uwb标签UWB芯片领域拥有深厚的技术实力,而且在产品研发和市场推广方面也积累了丰富的经验。该公司的核心业务包括UWB芯片的设计、制造、销售和技术支持,并提供完整的解决方案来满足不同行业的需求。 一、UWB芯片的优势和应用 UWB芯片作为实现准确定位和跟踪的关键技术,具有许多优势和广泛应用的潜力。首先,UWB芯片具有高精度的定位能力,可以达到亚厘米级的精度,尤其适用于对位置精度要求高的应用场景。其次,UWB技术在室内环境中的表现出色,能够克服传统技术在室内多路径干扰和信号衰减方面的限制。此外,UWB芯片还能够实现低功耗和高数据传输速率,适用于物流追踪、室内导航、智能家居等领域。 二、飞睿UWB定位公司的研发实力和技术创新 飞睿UWB定位公司以其突出的研发实力和技术创新能力在行业内独树一帜。该公司拥有一支由工程师和科研人员组成的专业团队,致力于UWB芯片的研发和创新应用。不仅在硬件设计方面有着丰富的经验,还在信号处理算法和定位算法等核心技术上有着深入研究。通过持续的技术创新和研发投入,UWB定位公司不断地提升产品性能,满足市场需求。 三、UWB定位公司的产品与解决方案 飞睿作为一家专业的无线定位测距uwb标签UWB芯片厂商,UWB定位公司提供了多款优秀的产品与解决方案。首先,飞睿的UWB芯片具有高性能和可靠性,能够满足各行业对定位精度和稳定性的要求。其次,UWB定位公司还提供完善的软件开发工具和技术支持,帮助客户快速集成和开发应用。此外,UWB定位公司还定制化的解决方案,根据客户的具体需求提供全面的技术支持和服务,确保系统的稳定运行和良好的用户体验。 四、UWB定位公司的应用案例 UWB定位公司的产品和解决方案已经成功应用于多个行业,并取得了显著的成果。以下是一些应用案例的介绍: 1. 物流和仓储管理:UWB定位技术可以实时追踪货物的位置和运动轨迹,提高物流效率和准确性。通过在仓库内部安装UWB基站,可以实现对货物的高精度定位,减少货物丢失和误配的情况,提升仓储管理的效率。 2. 室内导航和定位服务:UWB芯片可以用于室内导航和定位服务,帮助人们快速找到目的地并提供导航指引。在商场、机场、医院等场所安装UWB基站,可以提供准确的导航服务,为用户提供更好的体验。 3. 车联网和自动驾驶:UWB技术在车联网和自动驾驶领域也有广泛应用。通过在车辆中安装UWB传感器和芯片,可以实现车辆之间的精准通信和定位,提升驾驶安全性和车辆自主性。 4. 工业制造和机器人:在工业制造和机器人领域,UWB技术可以用于定位和跟踪移动设备和机器人的位置,提高生产效率和自动化水平。通过与其他传感器和系统的结合,可以实现更智能化的制造和操作。 五、未来发展和挑战 飞睿作为无线定位测距uwb标签UWB芯片厂商和定位技术提供商,UWB定位公司面临着许多机遇和挑战。随着物联网和人工智能的快速发展,对于精准定位和跟踪的需求将越来越大。UWB技术在室内定位、智能交通、工业制造等领域有着广阔的应用前景。然而,市场竞争激烈,技术要求不断提高,对于UWB定位公司来说,需要不断加强技术研发和创新能力,提供更优秀的产品和解决方案,赢得客户的信任和市场份额。 六、技术合作与生态建设 飞睿UWB定位公司在推动技术合作与生态建设方面也取得了显著成绩。他们积极与其他行业的厂商和合作伙伴进行技术交流和合作,共同推动UWB技术的发展和应用。通过与硬件设备生产商、软件开发公司以及系统集成商等的合作,UWB定位公司不仅拓展了产品的应用领域,还实现了技术的互补和资源的共享,加快了技术创新的速度和效果。 七、用户体验与满意度 作为先进的UWB芯片厂商和定位技术提供商,飞睿UWB定位公司一直将用户体验和满意度放在优先位置。他们注重产品的易用性和稳定性,在产品设计和功能开发上持续优化,以提供更好的用户体验。同时,UWB定位公司还建立了完善的售后服务体系,及时响应客户的需求和问题,并提供技术支持和解决方案,确保用户能够充分发挥UWB技术的价值和效果,获得满意的使用体验。 八、安全与隐私保护 在定位技术应用的同时,飞睿UWB定位公司也重视用户的安全和隐私保护。他们在产品设计和开发中注入了安全机制,采用加密和身份验证等技术手段,确保用户的数据和隐私得到有效保护。同时,UWB定位公司严格遵守相关法规和行业标准,保证数据的合法和合规使用,为用户提供可信赖的定位解决方案。 九、社会责任与可持续发展 作为一家具有社会责任感的企业,飞睿uwb标签UWB定位公司积极关注可持续发展和环境保护。他们在生产过程中注重资源的合理利用和能源的节约,致力于减少对环境的影响。同时,UWB定位公司也积极参与社会公益活动,回馈社会,为推动可持续发展和社会进步做出贡献。 总结: 飞睿UWB定位公司作为一家先进的无线定位测距uwb标签UWB芯片厂商和解决方案提供商,通过先进的技术研发和创新能力,成功实现了无缝定位的先进地位。他们的产品和解决方案在物流管理、室内导航、车联网、工业制造等领域展现出了巨大的应用潜力和市场前景。同时,UWB定位公司注重用户体验和满意度,积极推动技术合作与生态建设,关注安全与隐私保护,承担社会责任,致力于可持续发展。相信在不久的将来,UWB定位公司将以其先进的技术和卓越的服务,继续引领无线测距UWB芯片领域的发展,为行业和用户带来更多的创新和价值。
点击查看更多
18
2022-02

uA级别智能门锁低功耗雷达模块让门锁更加智能省电节约功耗

发布时间: : 2022-02--18
uA级别智能门锁低功耗雷达模块让门锁更加智能省电节约功耗,指纹门锁并不是什么新鲜事,我相信每个人都很熟悉。随着近年来智能家居的逐步普及,指纹门锁也进入了成千上万的家庭。今天的功耗雷达模块指纹门锁不仅消除了繁琐的钥匙,而且还提供了各种智能功能,uA级别智能门锁低功耗雷达模块用在智能门锁上,可以实现门锁的智能感应屏幕,使电池寿命延长3-5倍,如与其他智能家居连接,成为智能场景的开关。所以今天的指纹门锁更被称为智能门锁。 今天,让我们来谈谈功耗雷达模块智能门锁的安全性。希望能让更多想知道智能门锁的朋友认识下。 指纹识别是智能门锁的核心 指纹识别技术在我们的智能手机上随处可见。从以前的实体指纹识别到屏幕下的指纹识别,可以说指纹识别技术已经相当成熟。指纹识别可以说是整个uA级低功耗雷达模块智能门锁的核心。 目前主要有三种常见的指纹识别方法,即光学指纹识别、半导体指纹识别和超声指纹识别。 光学指纹识别 让我们先谈谈光学指纹识别的原理实际上是光的反射。我们都知道指纹本身是不均匀的。当光照射到我们的指纹上时,它会反射,光接收器可以通过接收反射的光来绘制我们的指纹。就像激光雷达测绘一样。 光学指纹识别通常出现在打卡机上,手机上的屏幕指纹识别技术也使用光学指纹识别。今天的光学指纹识别已经达到了非常快的识别速度。 然而,光学指纹识别有一个缺点,即硬件上的活体识别无法实现,容易被指模破解。通常,活体识别是通过软件算法进行的。如果算法处理不当,很容易翻车。 此外,光学指纹识别也容易受到液体的影响,湿手解锁的成功率也会下降。 超声指纹识别 超声指纹识别也被称为射频指纹识别,其原理与光学类型相似,但超声波使用声波反射,实际上是声纳的缩小版本。因为使用声波,不要担心水折射会降低识别率,所以超声指纹识别可以湿手解锁。然而,超声指纹识别在防破解方面与光学类型一样,不能实现硬件,可以被指模破解,活体识别仍然依赖于算法。 半导体指纹识别 半导体指纹识别主要采用电容、电场(即我们所说的电感)、温度和压力原理来实现指纹图像的收集。当用户将手指放在前面时,皮肤形成电容阵列的极板,电容阵列的背面是绝缘极板。由于不同区域指纹的脊柱与谷物之间的距离也不同,因此每个单元的电容量随之变化,从而获得指纹图像。半导体指纹识别具有价格低、体积小、识别率高的优点,因此大多数uA级低功耗雷达模块智能门锁都采用了这种方案。半导体指纹识别的另一个功能是活体识别。传统的硅胶指模无法破解。 当然,这并不意味着半导体可以百分识别活体。所谓的半导体指纹识别活体检测不使用指纹活体体征。本质上,它取决于皮肤的材料特性,这意味着虽然传统的硅胶指模无法破解。 一般来说,无论哪种指纹识别,都有可能被破解,只是说破解的水平。然而,今天的指纹识别,无论是硬件生活识别还是算法生活识别,都相对成熟,很难破解。毕竟,都可以通过支付级别的认证,大大保证安全。 目前,市场上大多数智能门锁仍将保留钥匙孔。除了指纹解锁外,用户还可以用传统钥匙开门。留下钥匙孔的主要目的是在指纹识别故障或智能门锁耗尽时仍有开门的方法。但由于有钥匙孔,它表明它可以通过技术手段解锁。 目前市场上的锁等级可分为A、B、C三个等级,这三个等级主要是通过防暴开锁和防技术开锁的程度来区分的。A级锁要求技术解锁时间不少于1分钟,B级锁要求不少于5分钟。即使是高级别的C级锁也只要求技术解锁时间不少于10分钟。 也就是说,现在市场上大多数门锁,无论是什么级别,在专业的解锁大师面前都糊,只不过是时间长短。 安全是重要的,是否安全增加了人们对uA级别低功耗雷达模块智能门锁安全的担忧。事实上,现在到处都是摄像头,强大的人脸识别,以及移动支付的出现,使家庭现金减少,所有这些都使得入室盗窃的成本急剧上升,近年来各省市的入室盗窃几乎呈悬崖状下降。 换句话说,无论锁有多安全,无论锁有多难打开,都可能比在门口安装摄像头更具威慑力。 因此,担心uA级别低功耗雷达模块智能门锁是否不安全可能意义不大。毕竟,家里的防盗锁可能不安全。我们应该更加关注门锁能给我们带来多少便利。 我们要考虑的是智能门锁的兼容性和通用性。毕竟,智能门锁近年来才流行起来。大多数人在后期将普通机械门锁升级为智能门锁。因此,智能门锁能否与原门兼容是非常重要的。如果不兼容,发现无法安装是一件非常麻烦的事情。 uA级别低功耗雷达模块智能门锁主要是为了避免带钥匙的麻烦。因此,智能门锁的便利性尤为重要。便利性主要体现在指纹的识别率上。手指受伤导致指纹磨损或老年人指纹较浅。智能门锁能否识别是非常重要的。 当然,如果指纹真的失效,是否有其他解锁方案,如密码解锁或NFC解锁。还需要注意密码解锁是否有虚假密码等防窥镜措施。 当然,智能门锁的耐久性也是一个需要特别注意的地方。uA级别低功耗雷达模块智能门锁主要依靠内部电池供电,这就要求智能门锁的耐久性尽可能好,否则经常充电或更换电池会非常麻烦。 智能门锁低功耗雷达模块:让门锁更加智能省电节约功耗 在当今信息化时代,智能门锁已经成为人们生活中不可或缺的一部分。对于门锁制造商来说,如何提高门锁的安全性、实用性和便利性,成为他们面对的重要课题。随着人们对门锁智能化的需求越来越高,门锁的能耗问题也成为了门锁制造商需要重视的问题。为此,越来越多的门锁制造商开始推出以低功耗为主题的系列产品。在这样的背景下,智能门锁低功耗雷达模块应运而生。 智能门锁低功耗雷达模块是一种新型技术,其采取雷达技术对门锁周围的物体进行探测,一旦发现门锁附近有人靠近,便会将门锁自动解锁,无需使用钥匙。同时,在保持智能控制的前提下,实现了门锁省电、节约功耗,延长门锁使用寿命。 在使用智能门锁低功耗雷达模块的门锁中,控制电路和自动解锁机制是关键的部件。控制电路采用先进的芯片技术,通过优秀的功耗控制以实现模块化管理。而自动解锁机制不仅可以通过微波信号控制实现门锁的无钥匙解锁,还能够在门锁未处理的情况下自动锁定,保障门锁的安全。 智能门锁低功耗雷达模块的主要特点是:低功耗、高灵敏度和高可靠性。该模块在进行人体检测时,可以远距离探测到距离为5-7米远处的人体信号,目标检测速度极快,而且对门锁周围的环境要求不高。同时,该模块采用了自适应自动补偿技术,能够根据不同环境的变化自动调整信号发射和接收参数,减小误检率。 在使用智能门锁低功耗雷达模块的门锁中,其功耗可以做到非常低,一组电池能够支持门锁持续使用几年左右。而且这样的智能门锁除了具有自动解锁的功能,还可与APP相互匹配,实现了远程操作的便捷性。 总的来说,智能门锁低功耗雷达模块的问世,解决了门锁安全性和省电节省方面的问题,是智能门锁材料不可或缺的一部分。作为门锁制造商,只有不断创新,利用这种新型技术,将会在行业中占据重要的地位。 除了上文所述的主要特点和优势,智能门锁低功耗雷达模块还具有以下几点: 1. 实时监测门锁周围环境变化,通过物体的距离体积和运动来确定是否有人靠近门锁,并控制门锁的开启或关闭,使得门锁更加智能化。 2. 可对门锁附件进行检测,如门挂、门应急照明灯以及紧急呼叫按钮等,并及时给出响应,确保门锁能够正常运作。这样,门锁在不受干扰的情况下,能够 保持安全通道。 3. 通过智能学习技术,能够自适应网站多种环境的变化,让智能门锁低功耗雷达模块更加准确和精细的控制门锁的开关,节约能耗并延长使用寿命。 4. 能够与其他智能电器相连,如智能家居系统、电视等,形成智能家居生态圈,更好地控制家庭访客进出,让生活更加方便。 综上所述,智能门锁低功耗雷达模块的出现,对提升门锁能耗管理和智能化有着重要作用。门锁制造商只有将这些新型技术运用到门锁产品中,才能更加贴合用户需求,满足消费市场的日益增长的智能化需求。
查看详情 查看详情
14
2022-01

微波雷达传感器雷达感应浴室镜上的应用

发布时间: : 2022-01--14
微波雷达传感器雷达感应浴室镜上的应用,如今,家用电器的智能化已成为一种常态,越来越多的人开始在自己的浴室里安装智能浴室镜。但是还有很多人对智能浴镜的理解还不够深入,今天就来说说这个话题。 什么是智能浴室镜?智慧型浴室镜,顾名思义,就是卫浴镜子智能化升级,入门级产品基本具备了彩灯和镜面触摸功能,更高档次的产品安装有微波雷达传感器智能感应,当感应到有人接近到一定距离即可开启亮灯或者亮屏操作,也可三色无极调,智能除雾,语音交互,日程安排备忘,甚至在镜子上看电视,听音乐,气象预报,问题查询,智能控制,健康管理等。 智能化雷达感应浴室镜与普通镜的区别,为什么要选TA?,就功能而言,普通浴镜价格用它没有什么压力!而且雷达感应智能浴镜会让人犹豫不决是否“值得一看”。就功能和应用而言,普通浴镜功能单一,而微波雷达传感器智能浴室镜功能创新:镜子灯光色温和亮度可以自由调节,镜面还可以湿手触控,智能除雾,既环保又健康! 尽管智能浴镜比较新颖,但功能丰富,体验感更好,特别是入门级的智能浴镜,具有基础智能化功能,真的适合想体验下智能化的小伙伴们。 给卫生间安装微波雷达传感器浴室镜安装注意什么? ①确定智能浴室镜的安装位置,因为是安装时在墙壁上打孔,一旦安装后一般无法移动位置。 ②在选购雷达感应智能浴室镜时,根据安装位置确定镜子的形状和尺寸。 ③确定智能浴镜的安装位置后,在布线时为镜子预留好电源线。 ④确定微波雷达传感器智能浴镜的安装高度,一般智能浴镜的标准安装高度约85cm(从地砖到镜子底),具体安装高度要根据家庭成员的身高及使用习惯来决定。 ⑤镜面遇到污渍,可用酒精或30%清洁稀释液擦洗,平时可用干毛巾养护,注意多通风。
查看详情 查看详情
29
2024-03

TAG宠物防丢器UWB定位器原理及应用

发布时间: : 2024-03--29
随着社会的发展和人们生活水平的提高,宠物已经成为许多家庭的重要成员。然而,宠物的走失或被盗事件时有发生,给主人带来巨大的担忧和痛苦。因此,宠物防丢器作为一种有效的追踪和管理工具,正逐渐受到市场的青睐。其中,UWB(Ultra-Wideband)定位技术以其高精度、低功耗等优势在宠物防丢器领域中占据着重要的地位。本文将深入探讨UWB定位器的原理、技术特点以及在宠物防丢器中的应用,以期为相关领域的研究和应用提供有益的参考。 二、UWB定位技术原理 UWB技术是一种利用纳秒至微秒级的非正弦波窄脉冲传输数据的无线通信技术。其工作原理是发送和接收极短的脉冲信号,通过测量信号的传播时间或时间差来计算距离,从而实现准确定位。由于UWB信号的脉冲宽度很窄,因此具有很高的时间分辨率,能够准确测量信号的传输时间,从而获得较高的定位精度。相比传统的无线通信技术,UWB具有更高的数据传输速率和更低的功耗。此外,UWB信号在宽频带上传输,具有较好的抗干扰能力和穿透能力,能够在复杂的环境中稳定工作。 三、TAG宠物防丢器UWB定位器的优势 高精度定位:UWB技术可以实现厘米级甚至毫米级的定位精度,远高于传统的GPS定位技术。这为准确追踪提供了强有力的支持,能够更准确地确定宠物的位置。 低功耗设计:对于长期跟踪和频繁使用的情况,低功耗设计确保了设备的持久性能和较长的使用寿命。这意味着用户可以长时间地使用宠物防丢器,而不用担心电量问题。 抗干扰能力强:UWB信号的特殊设计使其具有较强的抗干扰能力,能在复杂的环境中稳定工作。无论是城市的高楼大厦、密集的树木还是其他无线通信设备的干扰,UWB定位器都能较好地应对。 实时性高:由于UWB信号传输速率高,定位计算速度快,因此可以提供实时的位置信息。用户可以随时了解宠物的位置,及时掌握宠物的行踪。 四、TAG宠物防丢器UWB定位器的应用场景 宠物追踪与找回:一旦宠物走失,定位器可以迅速确定宠物的位置,帮助主人找回宠物。用户可以通过手机应用程序随时查看宠物的位置,并按照定位器的指引找回宠物。 宠物活动监测:通过分析宠物的活动轨迹,可以了解宠物的日常习惯和喜好。用户可以设置特定的活动区域,当宠物离开该区域时获得警报通知;还可以通过查看历史轨迹记录来了解宠物的行动模式。这些信息可以帮助主人更好地理解宠物,提供更好的照顾和陪伴。 紧急救援:在紧急情况下,如宠物陷入危险区域或发生意外事故,定位器可以迅速提供位置信息,协助救援人员快速到达现场。这对于及时救助宠物生命至关重要。 科研应用:在动物行为学研究中,UWB定位器可用于追踪和研究动物的运动模式和行为习性。科研人员可以通过分析动物的移动轨迹和活动范围来深入了解其生态和行为特征。这对于保护和改善动物栖息地具有重要的意义。 五、结论 随着人们对宠物安全的关注度不断提高,TAG宠物防丢器UWB定位器作为一种高效、准确的追踪工具,将在未来发挥越来越重要的作用。通过深入了解UWB定位器的原理和应用场景,我们可以更好地利用这一技术为宠物提供更好的保护和管理。同时,随着技术的不断进步和应用领域的拓展,相信UWB定位器将在更多领域展现出其强大的优势和应用潜力。
查看详情 查看详情
29
2024-03

外出防丢UWB儿童定位器TAG:守护孩子的安全,让父母更安心

发布时间: : 2024-03--29
随着社会的进步和科技的发展,儿童安全问题越来越受到人们的关注。作为家长,我们时刻关心孩子的安全,而选择一款可靠的儿童定位器是保障孩子安全的必备措施。在众多儿童定位器中,基于UWB(Ultra-Wideband)技术的儿童定位器TAG以其独特的定位技术和出色的性能成为市场上的佼佼者。 二、UWB技术的特点与优势 UWB技术是一种利用纳秒级脉冲信号进行通信的无线技术。与传统的定位技术相比,UWB技术具有高精度、低功耗和抗干扰能力强的特点。UWB通过发送和接收脉冲信号来计算目标物体的距离,从而实现厘米级的高精度定位。此外,UWB技术具有较低的功耗,能够延长定位器的待机时间,同时具有较强的抗干扰能力,能够在复杂的环境中稳定地工作。 三、儿童定位器的功能与特点 儿童定位器TAG采用可爱的外观设计,适应不同年龄段的孩子使用。它具备实时定位、历史轨迹查询和越界警报等多种核心功能。实时定位功能是儿童定位器的核心功能之一,它能够通过UWB技术实时获取孩子的位置信息,并通过配套的手机应用将位置信息显示给家长。历史轨迹查询功能则能够让家长回溯孩子的行动路线,了解孩子过去的位置信息。越界警报功能可以在孩子越过安全区域时及时通知家长,提醒家长及时采取措施保障孩子的安全。此外,定位器还具有防水和防摔功能,确保孩子在各种环境下都能安全使用。 四、使用体验与用户反馈 许多家长在实际使用中都对UWB儿童定位器TAG给予了高度评价。一位家长表示:“自从给孩子配备了这款定位器,我随时都能知道他在哪里,心里踏实多了。” 另一位家长则称赞道:“它的电池续航能力非常强,而且操作简单易懂,非常适合我们家长使用。”这些真实的用户评价充分证明了UWB儿童定位器TAG的实用性和可靠性。同时,用户反馈中也提到了一些改进意见,例如加强信号稳定性、增加更多的安全区域设置等。这些反馈为产品进一步优化提供了有益的参考。 五、安全性与隐私保护 在保障孩子安全的同时,我们深知家长们对隐私保护的重视。因此,UWB儿童定位器TAG采用多重加密措施来确保数据传输的安全性。从硬件到软件,从数据传输到存储,都经过了严格的安全设计。此外,我们还设置了严格的权限控制,只有经过授权的人员才能访问孩子的位置信息。同时,我们也提醒家长在使用过程中注意保护孩子的隐私,正确设置和使用产品,避免潜在风险。 六、结论 综上所述,UWB儿童定位器TAG凭借其先进的UWB定位技术、丰富的功能和出色的用户体验成为守护孩子安全的理想选择。我们希望通过这篇文章让更多家长了解UWB儿童定位器TAG的价值和意义选择合适的儿童定位器对于保障孩子安全至关重要。在选择儿童定位器时,家长们应该关注产品的定位技术、功能特点、用户体验和安全性等方面。UWB儿童定位器TAG以其独特的定位技术和出色的性能表现成为市场上的优选之选。它不仅具备实时定位、历史轨迹查询和越界警报等多种核心功能,还拥有可爱的外观设计、防水防摔功能以及强大的电池续航能力等特点。同时,我们也要注意保护孩子的隐私权和安全意识的培养在享受科技带来便利的同时教育孩子如何正确使用这些设备以及识别潜在的安全风险。让我们共同努力为孩子们创造一个更安全的成长环境吧!
查看详情 查看详情
28
2024-03

智能蓝牙防丢器UWB电动车定位器科技与生活的结合

发布时间: : 2024-03--28
在当今社会,随着科技的发展和人们生活水平的提高,个人物品的安全和防盗问题日益受到关注。智能蓝牙防丢器UWB电动车定位器的出现,为我们的日常生活带来了极大的便利。它不仅可以帮助我们随时掌握电动车的位置,还能有效防止物品丢失。那么,这款定位器是如何实现这些功能的呢?它又是如何在众多定位器中脱颖而出的呢?接下来,本文将全面解析这款定位器的功能、优势和操作方法,让您全面了解它的实际应用和价值。 二、智能蓝牙防丢器UWB技术解析 UWB(Ultra-Wideband)技术是一种无线通信技术,通过发送纳秒级脉冲信号实现高精度定位。这种技术可以提供厘米级的定位精度,远高于传统蓝牙和GPS定位技术。UWB技术具有低功耗的特性,可以在较长时间段内持续工作,而不会对设备的电池寿命产生太大影响。此外,UWB技术还可以在复杂的环境中实现可靠的通信,例如在建筑物密集的区域或存在其他无线信号干扰的环境中。这种技术在保证定位精度的同时,还具有较强的抗干扰能力,从而提高了定位的稳定性和准确性。 智能蓝牙防丢器UWB电动车定位器正是基于UWB技术,为用户提供精准可靠的定位服务。它通过与智能手机或其他接收设备建立连接,可以实时追踪电动车或其他物品的位置。用户可以通过手机APP随时查看电动车的当前位置、行驶轨迹等信息,并能够设定安全区域,一旦电动车离开设定的区域,APP就会发出警报通知用户。此外,这款定位器还具备物品追踪功能,用户可以通过APP远程控制定位器,轻松找回丢失的物品。 三、电动车定位器的实际应用场景 这款电动车定位器的应用场景非常广泛。在日常生活中,我们常常需要在大型超市的停车场快速找到自己的电动车,或者在拥挤的商场内轻松找到自己的购物车。这款定位器可以完美解决这些问题。只要将定位器安装在电动车上,我们就可以通过手机APP随时查看电动车的位置,方便快捷地找到它。同时,它还可以有效防止电动车被盗。当有人试图移动你的电动车时,定位器会立即发出警报声音,并通过手机APP向你发送警报通知。此外,这款定位器还具备物品追踪功能。如果你忘记把物品放在哪里了,只需打开手机APP,就能轻松找到它。同时,你还可以为每个物品设定一个安全区域。一旦有人或动物移动了你的物品并离开了这个区域,手机APP就会立即向你发出警报通知。 四、如何选择与使用智能蓝牙防丢器UWB电动车定位器 选择一款好的智能蓝牙防丢器UWB电动车定位器需要考虑多个因素:品牌信誉、产品质量、性能参数等都是重要的参考标准。一些知名品牌通常拥有更好的产品质量和更全面的售后服务。同时,了解产品的性能参数也是非常重要的。一些产品可能具备更准确的定位能力、更长的电池寿命和更多的功能。根据自己的实际需求选择合适的产品可以更好地平衡产品的性能和价格。 安装和使用智能蓝牙防丢器UWB电动车定位器相对简单。大多数产品都配有详细的说明书和安装指南。一般来说,将定位器安装在电动车的隐蔽位置是理想的选择,这样可以避免被他人轻易发现并移除。安装好后,只需通过手机APP进行简单的设置和连接即可开始使用。使用过程中需要注意保护自己的账号和密码安全,以及不泄露个人敏感信息。同时,定期更新软件和保持设备电量充足也是保证设备正常工作的关键因素。 五、市场前景与未来发展 随着人们对个人物品安全的关注度不断提高和科技的不断进步,智能蓝牙防丢器UWB电动车定位器市场前景广阔。未来几年内,随着物联网和人工智能技术的快速发展和应用,我们可以预见智能蓝牙防丢器UWB电动车定位器的功能将更加丰富和智能化。例如,它可以与智能家居系统相连,实现家庭物品的统一管理和监控;还可以应用于智能出行领域,为用户提供更加便捷和安全的出行体验。此外,随着5G技术的普及和应用,智能蓝牙防丢器UWB电动车定位器的数据传输速度和稳定性将得到进一步提升。因此,我们有理由相信,智能蓝牙防丢器UWB电动车定位器将在未来发挥更加重要的作用,为我们的生活带来更多的便利和安全。 六、结语 智能蓝牙防丢器UWB电动车定位器作为一款实用的安全防护产品,已经成为了我们生活中不可或缺的一部分。它不仅能帮助我们随时掌握电动车和其他物品的位置信息,还能有效防止物品被盗。通过本文的详细解析和介绍,相信您已经对这款定位器的功能、优势和操作方法有了全面的了解。让我们一起拥抱科技的力量,提高个人物品安全防范意识,让生活更加美好。
查看详情 查看详情
上一页
1
2
...
248

地址:深圳市宝安区西乡街道麻布社区宝安互联网产业基地A区6栋7栋7706

邮箱:Sales@ferry-semi.com

版权所有©2020  深圳市飞睿科技有限公司  粤ICP备2020098907号    飞睿科技微波雷达wifi模块网站地图