这是描述信息
兆易创新GD32-GigaDevice-兆易创新代理

兆易创新GD32E230F4P6-GD32 ARM Cortex-M23 Microcontroller

兆易创新GD32E230F4P6-GD32 ARM Cortex-M23 Microcontroller GigaDevice Semiconductor Inc. GD32E230xx ARM® Cortex®-M23 32-bit MCU Datasheet General description The GD32E230xx device belongs to the value line of GD32 MCU family. It is a new 32-bit general-purpose microcontroller based on the ARM® Cortex®-M23 core. The Cortex-M23 processor is an energy-efficient processor with a very low gate count. It is intended to be used for microcontroller and deeply embedded applications that require an area-optimized processor. The processor delivers high energy efficiency through a small but powerful instruction set and extensively optimized design, providing high-end processing hardware including a single-cycle multiplier and a 17-cycle divider. The GD32E230xx device incorporates the ARM® Cortex®-M23 32-bit processor core operating at up to 72 MHz frequency with Flash accesses 0~2 wait states to obtain maximum efficiency. It provides up to 64 KB embedded Flash memory and up to 8 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer one 12-bit ADC and one comparator, up to five general 16-bit timers, a basic timer, a PWM advanced timer, as well as standard and advanced communication interfaces: up to two SPIs, two I2Cs, two USARTs, and an I2S. The device operates from a 1.8 to 3.6 V power supply and available in –40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications. The above features make the GD32E230xx devices suitable for a wide range of applications, especially in areas such as industrial control, motor drives, user interface, power monitor and alarm systems, consumer and handheld equipment, gaming and GPS, E-bike and so on. Device information Table 2-1. GD32E230xx devices features and peripheral list   Part Number GD32E230xx   K4U6 K6U6 K8U6 K4T6 K6T6 K8T6 C4T6 C6T6 C8T6 FLASH (KB) 16 32 64 16 32 64 16 32 64 SRAM (KB) 4 6 8 4 4 8 4 6 8 Timers General timer(16-bit) 4 (2,13,15,16) 4 (2,13,15,16) 5 (2,13-16) 4 (2,13,15,16) 4 (2,13,15,16) 5 (2,13-16) 4 (2,13,15,16) 4 (2,13,15,16) 5 (2,13-16)   Advanced timer(16-bit) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0)   SysTick 1 1 1 1 1 1 1 1 1   Basic timer(16-bit) 1 (5) 1 (5) 1 (5) 1 (5) 1 (5) 1 (5) 1 (5) 1 (5) 1 (5)   Watchdog 2 2 2 2 2 2 2 2 2   RTC 1 1 1 1 1 1 1 1 1 Connectivity   USART 1 (0) 2 (0-1) 2 (0-1) 1 (0) 2 (0-1) 2 (0-1) 1 (0) 2 (0-1) 2 (0-1)     I2C 1 (0) 1 (0) 2 (0-1) 1 (0) 1 (0) 2 (0-1) 1 (0) 1 (0) 2 (0-1)     SPI/I2S 1/1 (0)/(0) 1/1 (0)/(0) 2/1 (0-1)/(0) 1/1 (0)/(0) 1/1 (0)/(0) 2/1 (0-1)/(0) 1/1 (0)/(0) 1/1 (0)/(0) 2/1 (0-1)/(0) GPIO 27 27 27 25 25 25 39 39 39 CMP 1 1 1 1 1 1 1 1 1 EXTI 16 16 16 16 16 16 16 16 16 ADC Units 1
兆易创新GD32-GigaDevice-兆易创新代理
产品描述

兆易创新GD32E230F4P6-GD32 ARM Cortex-M23 Microcontroller

GigaDevice Semiconductor Inc.
GD32E230xx
ARM® Cortex®-M23 32-bit MCU
Datasheet

General description

The GD32E230xx device belongs to the value line of GD32 MCU family. It is a new 32-bit general-purpose microcontroller based on the ARM® Cortex®-M23 core. The Cortex-M23 processor is an energy-efficient processor with a very low gate count. It is intended to be used for microcontroller and deeply embedded applications that require an area-optimized processor. The processor delivers high energy efficiency through a small but powerful instruction set and extensively optimized design, providing high-end processing hardware including a single-cycle multiplier and a 17-cycle divider.
The GD32E230xx device incorporates the ARM® Cortex®-M23 32-bit processor core operating at up to 72 MHz frequency with Flash accesses 0~2 wait states to obtain maximum efficiency. It provides up to 64 KB embedded Flash memory and up to 8 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer one 12-bit ADC and one comparator, up to five general 16-bit timers, a basic timer, a PWM advanced timer, as well as standard and advanced communication interfaces: up to two SPIs, two I2Cs, two USARTs, and an I2S.
The device operates from a 1.8 to 3.6 V power supply and available in –40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications.
The above features make the GD32E230xx devices suitable for a wide range of applications, especially in areas such as industrial control, motor drives, user interface, power monitor and alarm systems, consumer and handheld equipment, gaming and GPS, E-bike and so on.

Device information

Table 2-1. GD32E230xx devices features and peripheral list

 

Part Number

GD32E230xx

 

K4U6

K6U6

K8U6

K4T6

K6T6

K8T6

C4T6

C6T6

C8T6

FLASH (KB)

16

32

64

16

32

64

16

32

64

SRAM (KB)

4

6

8

4

4

8

4

6

8

Timers

General

timer(16-bit)

4

(2,13,15,16)

4

(2,13,15,16)

5

(2,13-16)

4

(2,13,15,16)

4

(2,13,15,16)

5

(2,13-16)

4

(2,13,15,16)

4

(2,13,15,16)

5

(2,13-16)

 

Advanced

timer(16-bit)

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

 

SysTick

1

1

1

1

1

1

1

1

1

 

Basic

timer(16-bit)

1

(5)

1

(5)

1

(5)

1

(5)

1

(5)

1

(5)

1

(5)

1

(5)

1

(5)

 

Watchdog

2

2

2

2

2

2

2

2

2

 

RTC

1

1

1

1

1

1

1

1

1

Connectivity

 

USART

1

(0)

2

(0-1)

2

(0-1)

1

(0)

2

(0-1)

2

(0-1)

1

(0)

2

(0-1)

2

(0-1)

 

 

I2C

1

(0)

1

(0)

2

(0-1)

1

(0)

1

(0)

2

(0-1)

1

(0)

1

(0)

2

(0-1)

 

 

SPI/I2S

1/1

(0)/(0)

1/1

(0)/(0)

2/1

(0-1)/(0)

1/1

(0)/(0)

1/1

(0)/(0)

2/1

(0-1)/(0)

1/1

(0)/(0)

1/1

(0)/(0)

2/1

(0-1)/(0)

GPIO

27

27

27

25

25

25

39

39

39

CMP

1

1

1

1

1

1

1

1

1

EXTI

16

16

16

16

16

16

16

16

16

ADC

Units

1

1

1

1

1

1

1

1

1

 

Channels

(External)

 

10

 

10

 

10

 

10

 

10

 

10

 

10

 

10

 

10

 

Channels

(Internal)

 

2

 

2

 

2

 

2

 

2

 

2

 

2

 

2

 

2

Package

QFN32

LQFP32

LQFP48

 

 

Part Number

GD32E230xx

 

F4V6

F6V6

F8V6

F4P6

F6P6

F8P6

G4U6

G6U6

G8U6

FLASH (KB)

16

32

64

16

32

64

16

32

64

SRAM (KB)

4

6

8

4

6

8

4

6

8

Timers

General

timer(16-bit)

4

(2,13,15,16)

4

(2,13,15,16)

4

(2,13,15,16)

4

(2,13,15,16)

4

(2,13,15,16)

4

(2,13,15,16)

4

(2,13,15,16)

4

(2,13,15,16)

5

(2,13-16)

 

Advanced

timer(16-bit)

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

 

SysTick

1

1

1

1

1

1

1

1

1

 

Basic

timer(16-bit)

1

(5)

1

(5)

1

(5)

1

(5)

1

(5)

1

(5)

1

(5)

1

(5)

1

(5)

 

Watchdog

2

2

2

2

2

2

2

2

2

 

RTC

1

1

1

1

1

1

1

1

1

Connectivity

 

USART

1

(0)

2

(0-1)

2

(0-1)

1

(0)

2

(0-1)

2

(0-1)

1

(0)

2

(0-1)

2

(0-1)

 

 

I2C

1

(0)

1

(0)

2

(0-1)

1

(0)

1

(0)

2

(0-1)

1

(0)

1

(0)

2

(0-1)

 

 

SPI/I2S

1/1

(0)/(0)

1/1

(0)/(0)

2/1

(0-1)/(0)

1/1

(0)/(0)

1/1

(0)/(0)

2/1

(0-1)/(0)

1/1

(0)/(0)

1/1

(0)/(0)

2/1

(0-1)/(0)

GPIO

15

15

15

15

15

15

23

23

23

CMP

1

1

1

1

1

1

1

1

1

EXTI

16

16

16

16

16

16

16

16

16

ADC

Units

1

1

1

1

1

1

1

1

1

 

Channels

(External)

 

9

 

9

 

9

 

9

 

9

 

9

 

10

 

10

 

10

 

Channels

(Internal)

 

2

 

2

 

2

 

2

 

2

 

2

 

2

 

2

 

2

Package

LGA20

TSSOP20

QFN28

 

Memory map

Table 2-3. GD32E230xx memory map

Pre-defined

Regions

 

Bus

 

ADDRESS

 

Peripherals

 

 

0xE000 0000 - 0xE00F FFFF

Cortex M23 internal peripherals

External Device

 

0xA000 0000 - 0xDFFF FFFF

Reserved

External RAM

 

0x60000000 - 0x9FFFFFFF

Reserved

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Peripherals

 

AHB1

0x5004 0000 - 0x5FFF FFFF

Reserved

 

 

0x5000 0000 - 0x5003 FFFF

Reserved

 

 

 

 

 

AHB2

0x4800 1800 - 0x4FFF FFFF

Reserved

 

 

0x4800 1400 - 0x4800 17FF

GPIOF

 

 

0x4800 1000 - 0x4800 13FF

Reserved

 

 

0x4800 0C00 - 0x4800 0FFF

Reserved

 

 

0x4800 0800 - 0x4800 0BFF

GPIOC

 

 

0x4800 0400 - 0x4800 07FF

GPIOB

 

 

0x4800 0000 - 0x4800 03FF

GPIOA

 

 

 

 

 

 

 

AHB1

0x4002 4400 - 0x47FF FFFF

Reserved

 

 

0x4002 4000 - 0x4002 43FF

Reserved

 

 

0x4002 3400 - 0x4002 3FFF

Reserved

 

 

0x4002 3000 - 0x4002 33FF

CRC

 

 

0x4002 2400 - 0x4002 2FFF

Reserved

 

 

0x4002 2000 - 0x4002 23FF

FMC

 

 

0x4002 1400 - 0x4002 1FFF

Reserved

 

 

0x4002 1000 - 0x4002 13FF

RCU

 

 

0x4002 0400 - 0x4002 0FFF

Reserved

 

 

0x4002 0000 - 0x4002 03FF

DMA

 

 

 

 

 

 

 

 

 

 

 

APB2

0x4001 8000 - 0x4001 FFFF

Reserved

 

 

0x4001 5C00 - 0x4001 7FFF

Reserved

 

 

0x4001 5800 - 0x4001 5BFF

DBG

 

 

0x4001 4C00 - 0x4001 57FF

Reserved

 

 

0x4001 4800 - 0x4001 4BFF

TIMER16

 

 

0x4001 4400 - 0x4001 47FF

TIMER15

 

 

0x4001 4000 - 0x4001 43FF

TIMER14

 

 

0x4001 3C00 - 0x4001 3FFF

Reserved

 

 

0x4001 3800 - 0x4001 3BFF

USART0

 

 

0x4001 3400 - 0x4001 37FF

Reserved

 

 

0x4001 3000 - 0x4001 33FF

SPI0/I2S0

 

 

0x4001 2C00 - 0x4001 2FFF

TIMER0

 

 

0x4001 2800 - 0x4001 2BFF

Reserved

 

 

0x4001 2400 - 0x4001 27FF

ADC

 

 

0x4001 0800 - 0x4001 23FF

Reserved

 

Pre-defined

Regions

 

Bus

 

ADDRESS

 

Peripherals

 

 

0x4001 0400 - 0x4001 07FF

EXTI

 

 

0x4001 0000 - 0x4001 03FF

SYSCFG + CMP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APB1

0x4000 CC00 - 0x4000 FFFF

Reserved

 

 

0x4000 C800 - 0x4000 CBFF

Reserved

 

 

0x4000 C400 - 0x4000 C7FF

Reserved

 

 

0x4000 C000 - 0x4000 C3FF

Reserved

 

 

0x4000 8000 - 0x4000 BFFF

Reserved

 

 

0x4000 7C00 - 0x4000 7FFF

Reserved

 

 

0x4000 7800 - 0x4000 7BFF

Reserved

 

 

0x4000 7400 - 0x4000 77FF

Reserved

 

 

0x4000 7000 - 0x4000 73FF

PMU

 

 

0x4000 6400 - 0x4000 6FFF

Reserved

 

 

0x4000 6000 - 0x4000 63FF

Reserved

 

 

0x4000 5C00 - 0x4000 5FFF

Reserved

 

 

0x4000 5800 - 0x4000 5BFF

I2C1

 

 

0x4000 5400 - 0x4000 57FF

I2C0

 

 

0x4000 4800 - 0x4000 53FF

Reserved

 

 

0x4000 4400 - 0x4000 47FF

USART1

 

 

0x4000 4000 - 0x4000 43FF

Reserved

 

 

0x4000 3C00 - 0x4000 3FFF

Reserved

 

 

0x4000 3800 - 0x4000 3BFF

SPI1

 

 

0x4000 3400 - 0x4000 37FF

Reserved

 

 

0x4000 3000 - 0x4000 33FF

FWDGT

 

 

0x4000 2C00 - 0x4000 2FFF

WWDGT

 

 

0x4000 2800 - 0x4000 2BFF

RTC

 

 

0x4000 2400 - 0x4000 27FF

Reserved

 

 

0x4000 2000 - 0x4000 23FF

TIMER13

 

 

0x4000 1400 - 0x4000 1FFF

Reserved

 

 

0x4000 1000 - 0x4000 13FF

TIMER5

 

 

0x4000 0800 - 0x4000 0FFF

Reserved

 

 

0x4000 0400 - 0x4000 07FF

TIMER2

 

 

0x4000 0000 - 0x4000 03FF

Reserved

 

SRAM

 

0x2000 2000 - 0x3FFF FFFF

Reserved

 

 

0x2000 0000 - 0x2000 1FFF

SRAM

 

 

 

Code

 

0x1FFF F810 - 0x1FFF FFFF

Reserved

 

 

0x1FFF F800 - 0x1FFF F80F

Option bytes

 

 

0x1FFF EC00 - 0x1FFF F7FF

System memory

 

 

0x0801 0000 - 0x1FFF EBFF

Reserved

 

 

0x0800 0000 - 0x0800 FFFF

Main Flash memory

 

 

0x0001 0000 - 0x07FF FFFF

Reserved

 

Pre-defined

Regions

 

Bus

 

ADDRESS

 

Peripherals

 

 

 

0x00000000 - 0x0000FFFF

Aliased to Flash or

system memory

 

GD32E230Cx LQFP48 pin definitions

Table 2-4. GD32E230Cx LQFP48 pin definitions

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

VDD

1

P

 

Default: VDD

PC13- TAMPER-

RTC

 

2

 

I/O

 

 

Default: PC13

Additional: RTC_TAMP0, RTC_TS, RTC_OUT, WKUP1

PC14-

OSC32IN

 

3

 

I/O

 

Default: PC14 Additional: OSC32IN

PC15-

OSC32OUT

 

4

 

I/O

 

Default: PC15 Additional: OSC32OUT

 

PF0-OSCIN

 

5

 

I/O

 

5VT

Default: PF0 Alternate: I2C0_SDA

Additional: OSCIN

 

PF1- OSCOUT

 

6

 

I/O

 

5VT

Default: PF1

Alternate: I2C0_SCL Additional: OSCOUT

NRST

7

I/O

 

Default: NRST

VSSA

8

P

 

Default: VSSA

VDDA

9

P

 

Default: VDDA

 

 

PA0-WKUP

 

 

10

 

 

I/O

 

Default: PA0

Alternate: USART0_CTS(3), USART1_CTS(4), CMP_OUT, I2C1_SCL(5)

Additional: ADC_IN0, CMP_IM6, RTC_TAMP1, WKUP0

 

 

PA1

 

 

11

 

 

I/O

 

Default: PA1

Alternate: USART0_RTS(3), USART1_RTS(4), I2C1_SDA(5), EVENTOUT, TIMER14_CH0_ON(5)

Additional: ADC_IN1, CMP_IP

 

 

PA2

 

 

12

 

 

I/O

 

Default: PA2

Alternate: USART0_TX(3), USART1_TX(4), TIMER14_CH0(5)

Additional: ADC_IN2, CMP_IM7

 

 

PA3

 

 

13

 

 

I/O

 

Default: PA3

Alternate: USART0_RX(3), USART1_RX(4), TIMER14_CH1(5)

Additional: ADC_IN3

 

 

PA4

 

 

14

 

 

I/O

 

Default: PA4

Alternate: SPI0_NSS, I2S0_WS, USART0_CK(3), USART1_CK(4), TIMER13_CH0, SPI1_NSS(5)

Additional: ADC_IN4, CMP_IM4

 

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

 

 

 

Default: PA5

PA5

15

I/O

 

Alternate: SPI0_SCK, I2S0_CK

 

 

 

 

Additional: ADC_IN5, CMP_IM5

 

 

 

 

Default: PA6

 

 

 

 

Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0,

PA6

16

I/O

 

TIMER0_BRKIN, TIMER15_CH0, EVENTOUT,

 

 

 

 

CMP_OUT

 

 

 

 

Additional: ADC_IN6

 

 

 

 

Default: PA7

 

 

 

 

Alternate: SPI0_MOSI, I2S0_SD, TIMER2_CH1,

PA7

17

I/O

 

TIMER13_CH0, TIMER0_CH0_ON, TIMER16_CH0,

 

 

 

 

EVENTOUT

 

 

 

 

Additional: ADC_IN7

 

 

 

 

Default: PB0

PB0

18

I/O

 

Alternate: TIMER2_CH2, TIMER0_CH1_ON,

USART1_RX(4), EVENTOUT

 

 

 

 

Additional: ADC_IN8

 

 

 

 

Default: PB1

PB1

19

I/O

 

Alternate: TIMER2_CH3, TIMER13_CH0,

TIMER0_CH2_ON, SPI1_SCK(5)

 

 

 

 

Additional: ADC_IN9

 

PB2

 

20

 

I/O

 

5VT

Default: PB2

Alternate: TIMER2_ETI

 

 

 

 

Default: PB10

PB10

21

I/O

5VT

Alternate: I2C0_SCL(3),I2C1_SCL(5), SPI1_IO2(5),

 

 

 

 

SPI1_SCK(5)

 

 

 

 

Default: PB11

PB11

22

I/O

5VT

Alternate: I2C0_SDA(3),I2C1_SDA(5), EVENTOUT,

 

 

 

 

SPI1_IO3(5)

VSS

23

P

 

Default: VSS

VDD

24

P

 

Default: VDD

 

 

 

 

Default: PB12

PB12

25

I/O

5VT

Alternate: SPI0_NSS(3), SPI1_NSS(5), TIMER0_BRKIN,

 

 

 

 

I2C1_SMBA(5), EVENTOUT

 

 

 

 

Default: PB13

PB13

26

I/O

5VT

Alternate: SPI0_SCK(3), SPI1_SCK(5), TIMER0_CH0_ON,

 

 

 

 

I2C1_TXFRAME(5), I2C1_SCL(5)

 

 

 

 

Default: PB14

PB14

27

I/O

5VT

Alternate: SPI0_MISO(3), SPI1_MISO(5),

 

 

 

 

TIMER0_CH1_ON, TIMER14_CH0(5), I2C1_SDA(5)

 

 

 

 

Default: PB15

 

 

 

 

Alternate: SPI0_MOSI(3), SPI1_MOSI(5),

PB15

28

I/O

5VT

TIMER0_CH2_ON, TIMER14_CH0_ON(5),

 

 

 

 

TIMER14_CH1(5)

 

 

 

 

Additional: RTC_REFIN, WKUP6

 

 

Pin Name

 

Pins

Pin Type(1)

I/O Level(2)

 

Functions description

 

PA8

 

29

 

I/O

 

5VT

Default: PA8

Alternate: USART0_CK, TIMER0_CH0, CK_OUT, USART1_TX(4), EVENTOUT

 

PA9

 

30

 

I/O

 

5VT

Default: PA9

Alternate: USART0_TX, TIMER0_CH1, TIMER14_BRKIN(5), I2C0_SCL, CK_OUT

 

PA10

 

31

 

I/O

 

5VT

Default: PA10

Alternate: USART0_RX, TIMER0_CH2,

TIMER16_BRKIN, I2C0_SDA

 

PA11

 

32

 

I/O

 

5VT

Default: PA11

Alternate: USART0_CTS, TIMER0_CH3, CMP_OUT, EVENTOUT, SPI1_IO2(5), I2C0_SMBA, I2C1_SCL(5)

 

PA12

 

33

 

I/O

 

5VT

Default: PA12

Alternate: USART0_RTS, TIMER0_ETI, EVENTOUT, SPI1_IO3(5), I2C0_TXFRAME, I2C1_SDA(5)

 

PA13

 

34

 

I/O

 

5VT

Default: PA13/SWDIO

Alternate: SWDIO, IFRP_OUT, SPI1_MISO(5)

 

PF6

 

35

 

I/O

 

5VT

Default: PF6

Alternate: I2C0_SCL(3), I2C1_SCL(5)

 

PF7

 

36

 

I/O

 

5VT

Default: PF7

Alternate: I2C0_SDA(3), I2C1_SDA(5)

 

PA14

 

37

 

I/O

 

5VT

Default: PA14/SWCLK

Alternate: USART0_TX(3), USART1_TX(4), SWCLK, SPI1_MOSI(5)

 

PA15

 

38

 

I/O

 

5VT

Default: PA15

Alternate: SPI0_NSS, I2S0_WS, USART0_RX(3), USART1_RX(4), SPI1_NSS(5), EVENTOUT

 

PB3

 

39

 

I/O

 

5VT

Default: PB3

Alternate: SPI0_SCK, I2S0_CK, EVENTOUT

 

PB4

 

40

 

I/O

 

5VT

Default: PB4

Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0, EVENTOUT, I2C0_TXFRAME, TIMER16_BRKIN

 

 

PB5

 

 

41

 

 

I/O

 

 

5VT

Default: PB5

Alternate: SPI0_MOSI,I2S0_SD, I2C0_SMBA, TIMER15_BRKIN, TIMER2_CH1

Additional: WKUP5

 

PB6

 

42

 

I/O

 

5VT

Default: PB6

Alternate: I2C0_SCL, USART0_TX, TIMER15_CH0_ON

 

PB7

 

43

 

I/O

 

5VT

Default: PB7

Alternate:I2C0_SDA, USART0_RX,TIMER16_CH0_ON

BOOT0

44

I

 

Default: BOOT0

 

PB8

 

45

 

I/O

 

5VT

Default: PB8

Alternate: I2C0_SCL, TIMER15_CH0

 

PB9

 

46

 

I/O

 

5VT

Default: PB9

Alternate: I2C0_SDA, IFRP_OUT, TIMER16_CH0,

 

 

Pin Name

 

Pins

Pin Type(1)

I/O Level(2)

 

Functions description

 

 

 

 

EVENTOUT, I2S0_MCK, SPI1_NSS(5)

VSS

47

P

 

Default: VSS

VDD

48

P

 

Default: VDD

Notes:
(1)Type: I = input, O = output, P = power.
(2)I/O Level: 5VT = 5 V tolerant.
(3)Functions are available on GD32E230C4 devices only.
(4)Functions are available on GD32E230C8/6 devices.
(5)Functions are available on GD32E230C8 devices only.

GD32E230Kx LQFP32 pin definitions

Table 2-5. GD32E230Kx LQFP32 pin definitions

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

VDD

1

P

 

Default: VDD

 

PF0-OSCIN

 

2

 

I/O

 

5VT

Default: PF0 Alternate: I2C0_SDA

Additional: OSCIN

 

PF1- OSCOUT

 

3

 

I/O

 

5VT

Default: PF1

Alternate: I2C0_SCL Additional: OSCOUT

NRST

4

I/O

 

Default: NRST

VDDA

5

P

 

Default: VDDA

 

 

PA0-WKUP

 

 

6

 

 

I/O

 

Default: PA0

Alternate: USART0_CTS(3), USART1_CTS(4), CMP_OUT, I2C1_SCL(5)

Additional: ADC_IN0, CMP_IM6, RTC_TAMP1, WKUP0

 

 

PA1

 

 

7

 

 

I/O

 

Default: PA1

Alternate: USART0_RTS(3), USART1_RTS(4), I2C1_SDA(5), EVENTOUT, TIMER14_CH0_ON(5)

Additional: ADC_IN1, CMP_IP

 

 

PA2

 

 

8

 

 

I/O

 

Default: PA2

Alternate: USART0_TX(3), USART1_TX(4), TIMER14_CH0(5)

Additional: ADC_IN2, CMP_IM7

 

 

PA3

 

 

9

 

 

I/O

 

Default: PA3

Alternate: USART0_RX(3), USART1_RX(4), TIMER14_CH1(5)

Additional: ADC_IN3

 

PA4

 

10

 

I/O

 

Default: PA4

Alternate: SPI0_NSS, I2S0_WS, USART0_CK(3), USART1_CK(4), TIMER13_CH0, SPI1_NSS(5)

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

 

 

 

Additional: ADC_IN4, CMP_IM4

 

 

 

 

Default: PA5

PA5

11

I/O

 

Alternate: SPI0_SCK, I2S0_CK

 

 

 

 

Additional: ADC_IN5, CMP_IM5

 

 

 

 

Default: PA6

 

 

 

 

Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0,

PA6

12

I/O

 

TIMER0_BRKIN, TIMER15_CH0, EVENTOUT,

 

 

 

 

CMP_OUT

 

 

 

 

Additional: ADC_IN6

 

 

 

 

Default: PA7

 

 

 

 

Alternate: SPI0_MOSI, I2S0_SD, TIMER2_CH1,

PA7

13

I/O

 

TIMER13_CH0, TIMER0_CH0_ON, TIMER16_CH0,

 

 

 

 

EVENTOUT

 

 

 

 

Additional: ADC_IN7

 

 

 

 

Default: PB0

PB0

14

I/O

 

Alternate: TIMER2_CH2, TIMER0_CH1_ON,

USART1_RX(4), EVENTOUT

 

 

 

 

Additional: ADC_IN8

 

 

 

 

Default: PB1

PB1

15

I/O

 

Alternate: TIMER2_CH3, TIMER13_CH0,

TIMER0_CH2_ON, SPI1_SCK(5)

 

 

 

 

Additional: ADC_IN9

VSS

16

P

 

Default: VSS

VDD

17

P

 

Default: VDD

 

 

 

 

Default: PA8

PA8

18

I/O

5VT

Alternate: USART0_CK, TIMER0_CH0, CK_OUT,

 

 

 

 

USART1_TX(4), EVENTOUT

 

 

 

 

Default: PA9

PA9

19

I/O

5VT

Alternate: USART0_TX, TIMER0_CH1,

 

 

 

 

TIMER14_BRKIN(5), I2C0_SCL, CK_OUT

 

 

 

 

Default: PA10

PA10

20

I/O

5VT

Alternate: USART0_RX, TIMER0_CH2,

 

 

 

 

TIMER16_BRKIN, I2C0_SDA

 

 

 

 

Default: PA11

PA11

21

I/O

5VT

Alternate: USART0_CTS, TIMER0_CH3, CMP_OUT,

 

 

 

 

EVENTOUT, SPI1_IO2(5), I2C0_SMBA, I2C1_SCL(5)

 

 

 

 

Default: PA12

PA12

22

I/O

5VT

Alternate: USART0_RTS, TIMER0_ETI, EVENTOUT,

 

 

 

 

SPI1_IO3(5), I2C0_TXFRAME, I2C1_SDA(5)

 

PA13

 

23

 

I/O

 

5VT

Default: PA13/SWDIO

Alternate: SWDIO, IFRP_OUT, SPI1_MISO(5)

 

 

 

 

Default: PA14/SWCLK

PA14

24

I/O

5VT

Alternate: USART0_TX(3), USART1_TX(4), SWCLK,

 

 

 

 

SPI1_MOSI(5)

 

PA15

 

25

 

I/O

 

5VT

Default: PA15

Alternate: SPI0_NSS, I2S0_WS, USART0_RX(3),

 

 

Pin Name

 

Pins

Pin Type(1)

I/O Level(2)

 

Functions description

 

 

 

 

USART1_RX(4), SPI1_NSS(5), EVENTOUT

 

PB3

 

26

 

I/O

 

5VT

Default: PB3

Alternate: SPI0_SCK, I2S0_CK, EVENTOUT

 

PB4

 

27

 

I/O

 

5VT

Default: PB4

Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0, EVENTOUT, I2C0_TXFRAME, TIMER16_BRKIN

 

 

PB5

 

 

28

 

 

I/O

 

 

5VT

Default: PB5

Alternate: SPI0_MOSI,I2S0_SD, I2C0_SMBA, TIMER15_BRKIN, TIMER2_CH1

Additional: WKUP5

 

PB6

 

29

 

I/O

 

5VT

Default: PB6

Alternate: I2C0_SCL, USART0_TX, TIMER15_CH0_ON

 

PB7

 

30

 

I/O

 

5VT

Default: PB7

Alternate:I2C0_SDA, USART0_RX,TIMER16_CH0_ON

BOOT0

31

I

 

Default: BOOT0

VSS

32

P

 

Default: VSS

Notes:
(1)Type: I = input, O = output, P = power.
(2)I/O Level: 5VT = 5 V tolerant.
(3)Functions are available on GD32E230K4 devices only.
(4)Functions are available on GD32E230K8/6 devices.
(5)Functions are available on GD32E230K8 devices only.

GD32E230Kx QFN32 pin definitions

Table 2-6. GD32E230Kx QFN32 pin definitions

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

VDD

1

P

 

Default: VDD

 

PF0-OSCIN

 

2

 

I/O

 

5VT

Default: PF0 Alternate: I2C0_SDA

Additional: OSCIN

 

PF1- OSCOUT

 

3

 

I/O

 

5VT

Default: PF1 Alternate: I2C0_SCL

Additional: OSCOUT

NRST

4

I/O

 

Default: NRST

VDDA

5

P

 

Default: VDDA

 

 

PA0-WKUP

 

 

6

 

 

I/O

 

Default: PA0

Alternate: USART0_CTS(3), USART1_CTS(4), CMP_OUT, I2C1_SCL(5)

Additional: ADC_IN0, CMP_IM6, RTC_TAMP1, WKUP0

 

PA1

 

7

 

I/O

 

Default: PA1

Alternate: USART0_RTS(3), USART1_RTS(4), I2C1_SDA(5), EVENTOUT, TIMER14_CH0_ON(5)

 

 

Pin Name

 

Pins

Pin Type(1)

I/O Level(2)

 

Functions description

 

 

 

 

Additional: ADC_IN1, CMP_IP

 

 

PA2

 

 

8

 

 

I/O

 

Default: PA2

Alternate: USART0_TX(3), USART1_TX(4), TIMER14_CH0(5)

Additional: ADC_IN2, CMP_IM7

 

 

PA3

 

 

9

 

 

I/O

 

Default: PA3

Alternate: USART0_RX(3), USART1_RX(4), TIMER14_CH1(5)

Additional: ADC_IN3

 

 

PA4

 

 

10

 

 

I/O

 

Default: PA4

Alternate: SPI0_NSS, I2S0_WS, USART0_CK(3), USART1_CK(4), TIMER13_CH0, SPI1_NSS(5)

Additional: ADC_IN4, CMP_IM4

 

PA5

 

11

 

I/O

 

Default: PA5

Alternate: SPI0_SCK, I2S0_CK Additional: ADC_IN5, CMP_IM5

 

 

PA6

 

 

12

 

 

I/O

 

Default: PA6

Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0, TIMER0_BRKIN, TIMER15_CH0, EVENTOUT, CMP_OUT

Additional: ADC_IN6

 

 

PA7

 

 

13

 

 

I/O

 

Default: PA7

Alternate: SPI0_MOSI, I2S0_SD, TIMER2_CH1, TIMER13_CH0, TIMER0_CH0_ON, TIMER16_CH0, EVENTOUT

Additional: ADC_IN7

 

 

PB0

 

 

14

 

 

I/O

 

Default: PB0

Alternate: TIMER2_CH2, TIMER0_CH1_ON, USART1_RX(4), EVENTOUT

Additional: ADC_IN8

 

 

PB1

 

 

15

 

 

I/O

 

Default: PB1

Alternate: TIMER2_CH3, TIMER13_CH0, TIMER0_CH2_ON, SPI1_SCK(5)

Additional: ADC_IN9

 

PB2

 

16

 

I/O

 

5VT

Default: PB2

Alternate: TIMER2_ETI

VDD

17

P

 

Default: VDD

 

PA8

 

18

 

I/O

 

5VT

Default: PA8

Alternate: USART0_CK, TIMER0_CH0, CK_OUT, USART1_TX(4), EVENTOUT

 

PA9

 

19

 

I/O

 

5VT

Default: PA9

Alternate: USART0_TX, TIMER0_CH1, TIMER14_BRKIN(5), I2C0_SCL, CK_OUT

 

PA10

 

20

 

I/O

 

5VT

Default: PA10

Alternate: USART0_RX, TIMER0_CH2,

TIMER16_BRKIN, I2C0_SDA

 

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

PA11

 

21

 

I/O

 

5VT

Default: PA11

Alternate: USART0_CTS, TIMER0_CH3, CMP_OUT, EVENTOUT, SPI1_IO2(5), I2C0_SMBA, I2C1_SCL(5)

 

PA12

 

22

 

I/O

 

5VT

Default: PA12

Alternate: USART0_RTS, TIMER0_ETI, EVENTOUT, SPI1_IO3(5), I2C0_TXFRAME, I2C1_SDA(5)

PA13

23

I/O

5VT

Default: PA13/SWDIO

Alternate: SWDIO, IFRP_OUT, SPI1_MISO(5)

 

PA14

 

24

 

I/O

 

5VT

Default: PA14/SWCLK

Alternate: USART0_TX(3), USART1_TX(4), SWCLK, SPI1_MOSI(5)

 

PA15

 

25

 

I/O

 

5VT

Default: PA15

Alternate: SPI0_NSS, I2S0_WS, USART0_RX(3), USART1_RX(4), SPI1_NSS(5), EVENTOUT

PB3

26

I/O

5VT

Default: PB3

Alternate: SPI0_SCK, I2S0_CK, EVENTOUT

 

PB4

 

27

 

I/O

 

5VT

Default: PB4

Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0, EVENTOUT, I2C0_TXFRAME, TIMER16_BRKIN

 

 

PB5

 

 

28

 

 

I/O

 

 

5VT

Default: PB5

Alternate: SPI0_MOSI,I2S0_SD, I2C0_SMBA, TIMER15_BRKIN, TIMER2_CH1

Additional: WKUP5

PB6

29

I/O

5VT

Default: PB6

Alternate: I2C0_SCL, USART0_TX, TIMER15_CH0_ON

PB7

30

I/O

5VT

Default: PB7

Alternate:I2C0_SDA, USART0_RX,TIMER16_CH0_ON

BOOT0

31

I

 

Default: BOOT0

PB8

32

I/O

5VT

Default: PB8

Alternate: I2C0_SCL, TIMER15_CH0

Notes:
(1)Type: I = input, O = output, P = power.
(2)I/O Level: 5VT = 5 V tolerant.
(3)Functions are available on GD32E230K4 devices only.
(4)Functions are available on GD32E230K8/6 devices.
(5)Functions are available on GD32E230K8 devices only.

ARM® Cortex®-M23 core

The Cortex-M23 processor is an energy-efficient processor with a very low gate count. It is intended to be used for microcontroller and deeply embedded applications that require an area-optimized processor. The processor is highly configurable enabling a wide range of implementations from those requiring memory protection and powerful trace technology to cost sensitive devices requiring minimal area, while delivering outstanding computational performance and an advanced system response to interrupts.
32-bit ARM® Cortex®-M23 processor core
Up to 72 MHz operation frequency
Single-cycle multiplication and hardware divider
Ultra-low power, energy-efficient operation
Excellent code density
Integrated Nested Vectored Interrupt Controller (NVIC)
24-bit SysTick timer

The Cortex®-M23 processor is based on the ARMv8-M architecture and supports both Thumb and Thumb-2 instruction sets. Some system peripherals listed below are also provided by Cortex®-M23:
Internal Bus Matrix connected with AHB master, Serial Wire Debug Port and Single-cycle IO port
Nested Vectored Interrupt Controller (NVIC)
Breakpoint Unit(BPU)
Data Watchpoint and Trace (DWT)
Serial Wire Debug Port


Embedded memory

Up to 64 Kbytes of Flash memory
Up to 8 Kbytes of SRAM with hardware parity checking

64 Kbytes of inner Flash and 8 Kbytes of inner SRAM at most is available for storing programs and data, both accessed (R/W) at CPU clock speed with 0~2 wait states. Table 2-3. GD32E230xx memory map shows the memory map of the GD32E230xx series of devices, including code, SRAM, peripheral, and other pre-defined regions.

3.3Clock, reset and supply management

Internal 8 MHz factory-trimmed RC and external 4 to 32 MHz crystal oscillator

Internal 28 MHz RC oscillator
Internal 40 KHz RC calibrated oscillator and external 32.768 KHz crystal oscillator
Integrated system clock PLL
1.8 to 3.6 V application supply and I/Os
Supply Supervisor: POR (Power On Reset), PDR (Power Down Reset), and low voltage detector (LVD)
The Clock Control Unit (CCU) provides a range of oscillator and clock functions. These include speed internal RC oscillator and external crystal oscillator, high speed and low speed two types. Several prescalers allow the frequency configuration of the AHB and two APB domains. The maximum frequency of the AHB, APB2 and APB1 domains is 72 MHz/72 MHz/72 MHz. See Figure 2-8. GD32E230xx clock tree for details on the clock tree.
The Reset Control Unit (RCU) controls three kinds of reset: system reset resets the processor core and peripheral IP components. Power-on reset (POR) and power-down reset (PDR) are always active, and ensures proper operation starting from 1.71 V and down to 1.67 V. The device remains in reset mode when VDD is below a specified threshold. The embedded low voltage detector (LVD) monitors the power supply, compares it to the voltage threshold and generates an interrupt as a warning message for leading the MCU into security.
Power supply schemes:
VDD range: 1.8 to 3.6 V, external power supply for I/Os and the internal regulator. Provided externally through VDD pins.
VSSA, VDDA range: 1.8 to 3.6 V, external analog power supplies for ADC, reset blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.
VBAK range: 1.8 to 3.6 V, power supply for RTC, external clock 32 KHz oscillator and backup registers (through power switch) when VDD is not present.

Boot modes

At startup, boot pins are used to select one of three boot options:
Boot from main Flash memory (default)
Boot from system memory
Boot from on-chip SRAM

In default condition, boot from main Flash memory is selected. The boot loader is located in the internal boot ROM memory (system memory). It is used to reprogram the Flash memory by using USART0 (PA9 and PA10) or USART1 (PA14 and PA15 or PA2 and PA3).

Power saving modes

The MCU supports three kinds of power saving modes to achieve even lower power consumption. They are sleep mode, deep-sleep mode, and standby mode. These operating modes reduce the power consumption and allow the application to achieve the best balance

between the CPU operating time, speed and power consumption.
Sleep mode
In sleep mode, only the clock of CPU core is off. All peripherals continue to operate and any interrupt/event can wake up the system.
Deep-sleep mode
In deep-sleep mode, all clocks in the 1.2V domain are off, and all of the high speed crystal oscillator (IRC8M, HXTAL) and PLL are disabled. Only the contents of SRAM and registers are retained. Any interrupt or wakeup event from EXTI lines can wake up the system from the deep-sleep mode including the 16 external lines, the RTC alarm, RTC tamper and timestamp, CMP output, LVD output and USART wakeup. When exiting the deep-sleep mode, the IRC8M is selected as the system clock.
Standby mode
In standby mode, the whole 1.2V domain is power off, the LDO is shut down, and all of IRC8M, HXTAL and PLL are disabled. The contents of SRAM and registers (except backup registers) are lost. There are four wakeup sources for the standby mode, including the external reset from NRST pin, the RTC alarm, the FWDGT reset, and the rising edge on WKUP pin.

Analog to digital converter (ADC)

12-bit SAR ADC's conversion rate is up to 2 MSPS
12-bit, 10-bit, 8-bit or 6-bit configurable resolution
Hardware oversampling ratio adjustable from 2 to 256x improves resolution to 16-bit
Input voltage range: VSSA to VDDA
Temperature sensor

One 12-bit 2 MSPS multi-channel ADC is integrated in the device. It has a total of 12 multiplexed channels: up to 10 external channels, 1 channel for internal temperature sensor (VSENSE) and 1 channel for internal reference voltage (VREFINT). The input voltage range is between VSSA and VDDA. An on-chip hardware oversampling scheme improves performance while off-loading the related computational burden from the CPU. An analog watchdog block can be used to detect the channels, which are required to remain within a specific threshold window. A configurable channel management block can be used to perform conversions in single, continuous, scan or discontinuous mode to support more advanced use.
The ADC can be triggered from the events generated by the general level 0 timers (TIMERx) and the advanced timer (TIMER0) with internal connection. The temperature sensor can be used to generate a voltage that varies linearly with temperature. It is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage in a digital value.

DMA

5 channels DMA controller
Peripherals supported: Timers, ADC, SPIs, I2Cs, USARTs and I2S

The flexible general-purpose DMA controllers provide a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other system functions. Three types of access method are supported: peripheral to memory, memory to peripheral, memory to memory.
Each channel is connected to fixed hardware DMA requests. The priorities of DMA channel requests are determined by software configuration and hardware channel number. Transfer size of source and destination are independent and configurable.

General-purpose inputs/outputs (GPIOs)

Up to 39 fast GPIOs, all mappable on 16 external interrupt lines
Analog input/output configurable
Alternate function input/output configurable

There are up to 39 general purpose I/O pins (GPIO) in GD32E230xx, named PA0 ~ PA15 and PB0 ~ PB15, PC13 ~ PC15, PF0 ~ PF1, PF6 ~ PF7 to implement logic input/output functions. Each of the GPIO ports has related control and configuration registers to satisfy the requirements of specific applications. The external interrupts on the GPIO pins of the device have related control and configuration registers in the Interrupt/event controller (EXTI). The GPIO ports are pin-shared with other alternative functions (AFs) to obtain maximum flexibility on the package pins. Each of the GPIO pins can be configured by software as output (push- pull open-drain or analog), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current capable except for analog inputs.

Timers and PWM generation

One 16-bit advanced timer (TIMER0), up to five 16-bit general timers (TIMER2, TIMER13
~ TIMER16), and one 16-bit basic timer (TIMER5)
Up to 4 independent channels of PWM, output compare or input capture for each general timer and external trigger input
16-bit, motor control PWM advanced timer with programmable dead-time generation for output match
Encoder interface controller with two inputs using quadrature decoder
24-bit SysTick timer down counter
2 watchdog timers (free watchdog timer and window watchdog timer)

The advanced timer (TIMER0) can be used as a three-phase PWM multiplexed on 6 channels.

It has complementary PWM outputs with programmable dead-time generation. It can also be used as a complete general timer. The 4 independent channels can be used for input capture, output compare, PWM generation (edge- or center- aligned counting modes) and single pulse mode output. If configured as a general 16-bit timer, it has the same functions as the TIMERx timer. It can be synchronized with external signals or to interconnect with other general timers together which have the same architecture and features.
The general timer can be used for a variety of purposes including general time, input signal pulse width measurement or output waveform generation such as a single pulse generation or PWM output, up to 4 independent channels for input capture/output compare. TIMER2 is based on a 16-bit auto-reload up/down counter and a 16-bit prescaler. TIMER13 ~ TIMER16 is based on a 16-bit auto-reload up counter and a 16-bit prescaler. The general timer also supports an encoder interface with two inputs using quadrature decoder.
The basic timer, known as TIMER5 can also be used as a simple 16-bit time base.

The GD32E230xx have two watchdog peripherals, free watchdog and window watchdog. They offer a combination of high safety level, flexibility of use and timing accuracy.
The free watchdog timer includes a 12-bit down-counting counter and an 8-bit prescaler. It is clocked from an independent 40 KHz internal RC and as it operates independently of the main clock, it can operate in deep-sleep and standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management.
The window watchdog is based on a 7-bit down counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early wakeup interrupt capability and the counter can be frozen in debug mode.
The SysTick timer is dedicated for OS, but could also be used as a standard down counter. The features are shown below:
A 24-bit down counter
Auto reload capability
Maskable system interrupt generation when the counter reaches 0
Programmable clock source


Real time clock (RTC)

Independent binary-coded decimal (BCD) format timer/counter with five 32-bit backup registers.
Calendar with subsecond, second, minute, hour, week day, date, year and month automatically correction
Alarm function with wake up from deep-sleep and standby mode capability
On-the-fly correction for synchronization with master clock. Digital calibration with 0.954 ppm resolution for compensation of quartz crystal inaccuracy.

The real time clock is an independent timer which provides a set of continuously running counters in backup registers to provide a real calendar function, and provides an alarm interrupt or an expected interrupt. It is not reset by a system or power reset, or when the device wakes up from standby mode. In the RTC unit, there are two prescalers used for implementing the calendar and other functions. One prescaler is a 7-bit asynchronous prescaler and the other is a 15-bit synchronous prescaler.

Inter-integrated circuit (I2C)

Up to two I2C bus interfaces can support both master and slave mode with a frequency up to 1 MHz (Fast mode plus)
Provide arbitration function, optional PEC (packet error checking) generation and checking
Supports 7-bit and 10-bit addressing mode and general call addressing mode
Supports SAM_V mode

The I2C interface is an internal circuit allowing communication with an external I2C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line (SDA) and a serial clock line (SCL). The I2C module provides different data transfer rates: up to 100 KHz in standard mode, up to 400 KHz in the fast mode and up to 1 MHz in the fast mode plus. The I2C module also has an arbitration detect function to prevent the situation where more than one master attempts to transmit data to the I2C bus at the same time. A CRC-8 calculator is also provided in I2C interface to perform packet error checking for I2C data.

Serial peripheral interface (SPI)

Up to two SPI interfaces with a frequency of up to 18 MHz
Support both master and slave mode
Hardware CRC calculation and transmit automatic CRC error checking
Separate transmit and receive 32-bit FIFO with DMA capability (only in SPI1)
Data frame size can be 4 to 16 bits (only in SPI1)
Quad-SPI configuration available in master mode (only in SPI1)

The SPI interface uses 4 pins, among which are the serial data input and output lines (MISO & MOSI), the clock line (SCK) and the slave select line (NSS). Both SPIs can be served by the DMA controller. The SPI interface may be used for a variety of purposes, including simplex synchronous transfers on two lines with a possible bidirectional data line or reliable communication using CRC checking. Specially, SPI1 has separate transmit and receive 32- bit FIFO with DMA capability and its data frame size can be 4 to 16 bits. Quad-SPI master mode is also supported in SPI1.

Universal synchronous asynchronous receiver transmitter (USART)
Up to two USARTs with operating frequency up to 4.5 MBits/s
Supports both asynchronous and clocked synchronous serial communication modes
IrDA SIR encoder and decoder support
LIN break generation and detection
ISO 7816-3 compliant smart card interface

The USART (USART0, USART1) are used to translate data between parallel and serial interfaces, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. It is also commonly used for RS-232 standard communication. The USART includes a programmable baud rate generator which is capable of dividing the system clock to produce a dedicated clock for the USART transmitter and receiver. The USART also supports DMA function for high speed data communication.

Inter-IC sound (I2S)

One I2S bus Interfaces with sampling frequency from 8 KHz to 192 KHz, multiplexed with SPI0
Support either master or slave mode

The Inter-IC sound (I2S) bus provides a standard communication interface for digital audio applications by 3-wire serial lines. GD32E230xx contain an I2S-bus interface that can be operated with 16/32 bit resolution in master or slave mode, pin multiplexed with SPI0. The audio sampling frequency from 8 KHz to 192 KHz is supported with less than 0.5% accuracy error.

Comparators (CMP)

One fast rail-to-rail low-power comparators with software configurable
Programmable reference voltage (internal or external I/O)

One Comparator (CMP) is implemented within the devices. It can wake up from deep-sleep mode to generate interrupts and breaks for the timers and also can be combined as a window comparator. The internal voltage reference is also connected to ADC_IN17 input channel of the ADC.

Debug mode

Serial wire debug port

Debug capabilities can be accessed by a debug tool via Serial Wire (SW - Debug Port).


Package and operation temperature

LQFP48 (GD32E230CxTx), LQFP32 (GD32E230KxTx), QFN32 (GD32E230KxUx), QFN28 (GD32E230GxUx), TSSOP20 (GD32E230FxPx) and LGA20 (GD32E230FxVx).
Operation temperature range: -40°C to +85°C (industrial level)

扫二维码用手机看

飞睿无线定位测距uwb标签UWB芯片厂商UWB定位公司实现无缝定位的领跑者

在当今数字化世界中,定位技术的重要性越来越被广泛认知和应用。从室内导航到物流跟踪,无线测距UWB芯片的出现为各行各业带来了新的可能性。而在这个充满竞争的领域中,一家名为飞睿UWB定位公司的无线定位测距uwb标签UWB芯片厂商,凭借其先进的技术和创新能力,成功成为实现无缝定位的先进者。 UWB(Ultra-Wideband)是一种广泛应用于室内定位和跟踪的无线通信技术。相比传统的定位技术,如GPS或Wi-Fi,UWB具有更高的精度和定位准确性。这一技术利用短脉冲信号的传播时间来计算物体与基站之间的距离,从而实现高精度的定位。 飞睿UWB定位公司作为一家专注于UWB技术研发和应用的企业,不仅在无线定位测距uwb标签UWB芯片领域拥有深厚的技术实力,而且在产品研发和市场推广方面也积累了丰富的经验。该公司的核心业务包括UWB芯片的设计、制造、销售和技术支持,并提供完整的解决方案来满足不同行业的需求。 一、UWB芯片的优势和应用 UWB芯片作为实现准确定位和跟踪的关键技术,具有许多优势和广泛应用的潜力。首先,UWB芯片具有高精度的定位能力,可以达到亚厘米级的精度,尤其适用于对位置精度要求高的应用场景。其次,UWB技术在室内环境中的表现出色,能够克服传统技术在室内多路径干扰和信号衰减方面的限制。此外,UWB芯片还能够实现低功耗和高数据传输速率,适用于物流追踪、室内导航、智能家居等领域。 二、飞睿UWB定位公司的研发实力和技术创新 飞睿UWB定位公司以其突出的研发实力和技术创新能力在行业内独树一帜。该公司拥有一支由工程师和科研人员组成的专业团队,致力于UWB芯片的研发和创新应用。不仅在硬件设计方面有着丰富的经验,还在信号处理算法和定位算法等核心技术上有着深入研究。通过持续的技术创新和研发投入,UWB定位公司不断地提升产品性能,满足市场需求。 三、UWB定位公司的产品与解决方案 飞睿作为一家专业的无线定位测距uwb标签UWB芯片厂商,UWB定位公司提供了多款优秀的产品与解决方案。首先,飞睿的UWB芯片具有高性能和可靠性,能够满足各行业对定位精度和稳定性的要求。其次,UWB定位公司还提供完善的软件开发工具和技术支持,帮助客户快速集成和开发应用。此外,UWB定位公司还定制化的解决方案,根据客户的具体需求提供全面的技术支持和服务,确保系统的稳定运行和良好的用户体验。 四、UWB定位公司的应用案例 UWB定位公司的产品和解决方案已经成功应用于多个行业,并取得了显著的成果。以下是一些应用案例的介绍: 1. 物流和仓储管理:UWB定位技术可以实时追踪货物的位置和运动轨迹,提高物流效率和准确性。通过在仓库内部安装UWB基站,可以实现对货物的高精度定位,减少货物丢失和误配的情况,提升仓储管理的效率。 2. 室内导航和定位服务:UWB芯片可以用于室内导航和定位服务,帮助人们快速找到目的地并提供导航指引。在商场、机场、医院等场所安装UWB基站,可以提供准确的导航服务,为用户提供更好的体验。 3. 车联网和自动驾驶:UWB技术在车联网和自动驾驶领域也有广泛应用。通过在车辆中安装UWB传感器和芯片,可以实现车辆之间的精准通信和定位,提升驾驶安全性和车辆自主性。 4. 工业制造和机器人:在工业制造和机器人领域,UWB技术可以用于定位和跟踪移动设备和机器人的位置,提高生产效率和自动化水平。通过与其他传感器和系统的结合,可以实现更智能化的制造和操作。 五、未来发展和挑战 飞睿作为无线定位测距uwb标签UWB芯片厂商和定位技术提供商,UWB定位公司面临着许多机遇和挑战。随着物联网和人工智能的快速发展,对于精准定位和跟踪的需求将越来越大。UWB技术在室内定位、智能交通、工业制造等领域有着广阔的应用前景。然而,市场竞争激烈,技术要求不断提高,对于UWB定位公司来说,需要不断加强技术研发和创新能力,提供更优秀的产品和解决方案,赢得客户的信任和市场份额。 六、技术合作与生态建设 飞睿UWB定位公司在推动技术合作与生态建设方面也取得了显著成绩。他们积极与其他行业的厂商和合作伙伴进行技术交流和合作,共同推动UWB技术的发展和应用。通过与硬件设备生产商、软件开发公司以及系统集成商等的合作,UWB定位公司不仅拓展了产品的应用领域,还实现了技术的互补和资源的共享,加快了技术创新的速度和效果。 七、用户体验与满意度 作为先进的UWB芯片厂商和定位技术提供商,飞睿UWB定位公司一直将用户体验和满意度放在优先位置。他们注重产品的易用性和稳定性,在产品设计和功能开发上持续优化,以提供更好的用户体验。同时,UWB定位公司还建立了完善的售后服务体系,及时响应客户的需求和问题,并提供技术支持和解决方案,确保用户能够充分发挥UWB技术的价值和效果,获得满意的使用体验。 八、安全与隐私保护 在定位技术应用的同时,飞睿UWB定位公司也重视用户的安全和隐私保护。他们在产品设计和开发中注入了安全机制,采用加密和身份验证等技术手段,确保用户的数据和隐私得到有效保护。同时,UWB定位公司严格遵守相关法规和行业标准,保证数据的合法和合规使用,为用户提供可信赖的定位解决方案。 九、社会责任与可持续发展 作为一家具有社会责任感的企业,飞睿uwb标签UWB定位公司积极关注可持续发展和环境保护。他们在生产过程中注重资源的合理利用和能源的节约,致力于减少对环境的影响。同时,UWB定位公司也积极参与社会公益活动,回馈社会,为推动可持续发展和社会进步做出贡献。 总结: 飞睿UWB定位公司作为一家先进的无线定位测距uwb标签UWB芯片厂商和解决方案提供商,通过先进的技术研发和创新能力,成功实现了无缝定位的先进地位。他们的产品和解决方案在物流管理、室内导航、车联网、工业制造等领域展现出了巨大的应用潜力和市场前景。同时,UWB定位公司注重用户体验和满意度,积极推动技术合作与生态建设,关注安全与隐私保护,承担社会责任,致力于可持续发展。相信在不久的将来,UWB定位公司将以其先进的技术和卓越的服务,继续引领无线测距UWB芯片领域的发展,为行业和用户带来更多的创新和价值。
点击查看更多
18
2022-02

uA级别智能门锁低功耗雷达模块让门锁更加智能省电节约功耗

发布时间: : 2022-02--18
uA级别智能门锁低功耗雷达模块让门锁更加智能省电节约功耗,指纹门锁并不是什么新鲜事,我相信每个人都很熟悉。随着近年来智能家居的逐步普及,指纹门锁也进入了成千上万的家庭。今天的功耗雷达模块指纹门锁不仅消除了繁琐的钥匙,而且还提供了各种智能功能,uA级别智能门锁低功耗雷达模块用在智能门锁上,可以实现门锁的智能感应屏幕,使电池寿命延长3-5倍,如与其他智能家居连接,成为智能场景的开关。所以今天的指纹门锁更被称为智能门锁。 今天,让我们来谈谈功耗雷达模块智能门锁的安全性。希望能让更多想知道智能门锁的朋友认识下。 指纹识别是智能门锁的核心 指纹识别技术在我们的智能手机上随处可见。从以前的实体指纹识别到屏幕下的指纹识别,可以说指纹识别技术已经相当成熟。指纹识别可以说是整个uA级低功耗雷达模块智能门锁的核心。 目前主要有三种常见的指纹识别方法,即光学指纹识别、半导体指纹识别和超声指纹识别。 光学指纹识别 让我们先谈谈光学指纹识别的原理实际上是光的反射。我们都知道指纹本身是不均匀的。当光照射到我们的指纹上时,它会反射,光接收器可以通过接收反射的光来绘制我们的指纹。就像激光雷达测绘一样。 光学指纹识别通常出现在打卡机上,手机上的屏幕指纹识别技术也使用光学指纹识别。今天的光学指纹识别已经达到了非常快的识别速度。 然而,光学指纹识别有一个缺点,即硬件上的活体识别无法实现,容易被指模破解。通常,活体识别是通过软件算法进行的。如果算法处理不当,很容易翻车。 此外,光学指纹识别也容易受到液体的影响,湿手解锁的成功率也会下降。 超声指纹识别 超声指纹识别也被称为射频指纹识别,其原理与光学类型相似,但超声波使用声波反射,实际上是声纳的缩小版本。因为使用声波,不要担心水折射会降低识别率,所以超声指纹识别可以湿手解锁。然而,超声指纹识别在防破解方面与光学类型一样,不能实现硬件,可以被指模破解,活体识别仍然依赖于算法。 半导体指纹识别 半导体指纹识别主要采用电容、电场(即我们所说的电感)、温度和压力原理来实现指纹图像的收集。当用户将手指放在前面时,皮肤形成电容阵列的极板,电容阵列的背面是绝缘极板。由于不同区域指纹的脊柱与谷物之间的距离也不同,因此每个单元的电容量随之变化,从而获得指纹图像。半导体指纹识别具有价格低、体积小、识别率高的优点,因此大多数uA级低功耗雷达模块智能门锁都采用了这种方案。半导体指纹识别的另一个功能是活体识别。传统的硅胶指模无法破解。 当然,这并不意味着半导体可以百分识别活体。所谓的半导体指纹识别活体检测不使用指纹活体体征。本质上,它取决于皮肤的材料特性,这意味着虽然传统的硅胶指模无法破解。 一般来说,无论哪种指纹识别,都有可能被破解,只是说破解的水平。然而,今天的指纹识别,无论是硬件生活识别还是算法生活识别,都相对成熟,很难破解。毕竟,都可以通过支付级别的认证,大大保证安全。 目前,市场上大多数智能门锁仍将保留钥匙孔。除了指纹解锁外,用户还可以用传统钥匙开门。留下钥匙孔的主要目的是在指纹识别故障或智能门锁耗尽时仍有开门的方法。但由于有钥匙孔,它表明它可以通过技术手段解锁。 目前市场上的锁等级可分为A、B、C三个等级,这三个等级主要是通过防暴开锁和防技术开锁的程度来区分的。A级锁要求技术解锁时间不少于1分钟,B级锁要求不少于5分钟。即使是高级别的C级锁也只要求技术解锁时间不少于10分钟。 也就是说,现在市场上大多数门锁,无论是什么级别,在专业的解锁大师面前都糊,只不过是时间长短。 安全是重要的,是否安全增加了人们对uA级别低功耗雷达模块智能门锁安全的担忧。事实上,现在到处都是摄像头,强大的人脸识别,以及移动支付的出现,使家庭现金减少,所有这些都使得入室盗窃的成本急剧上升,近年来各省市的入室盗窃几乎呈悬崖状下降。 换句话说,无论锁有多安全,无论锁有多难打开,都可能比在门口安装摄像头更具威慑力。 因此,担心uA级别低功耗雷达模块智能门锁是否不安全可能意义不大。毕竟,家里的防盗锁可能不安全。我们应该更加关注门锁能给我们带来多少便利。 我们要考虑的是智能门锁的兼容性和通用性。毕竟,智能门锁近年来才流行起来。大多数人在后期将普通机械门锁升级为智能门锁。因此,智能门锁能否与原门兼容是非常重要的。如果不兼容,发现无法安装是一件非常麻烦的事情。 uA级别低功耗雷达模块智能门锁主要是为了避免带钥匙的麻烦。因此,智能门锁的便利性尤为重要。便利性主要体现在指纹的识别率上。手指受伤导致指纹磨损或老年人指纹较浅。智能门锁能否识别是非常重要的。 当然,如果指纹真的失效,是否有其他解锁方案,如密码解锁或NFC解锁。还需要注意密码解锁是否有虚假密码等防窥镜措施。 当然,智能门锁的耐久性也是一个需要特别注意的地方。uA级别低功耗雷达模块智能门锁主要依靠内部电池供电,这就要求智能门锁的耐久性尽可能好,否则经常充电或更换电池会非常麻烦。 智能门锁低功耗雷达模块:让门锁更加智能省电节约功耗 在当今信息化时代,智能门锁已经成为人们生活中不可或缺的一部分。对于门锁制造商来说,如何提高门锁的安全性、实用性和便利性,成为他们面对的重要课题。随着人们对门锁智能化的需求越来越高,门锁的能耗问题也成为了门锁制造商需要重视的问题。为此,越来越多的门锁制造商开始推出以低功耗为主题的系列产品。在这样的背景下,智能门锁低功耗雷达模块应运而生。 智能门锁低功耗雷达模块是一种新型技术,其采取雷达技术对门锁周围的物体进行探测,一旦发现门锁附近有人靠近,便会将门锁自动解锁,无需使用钥匙。同时,在保持智能控制的前提下,实现了门锁省电、节约功耗,延长门锁使用寿命。 在使用智能门锁低功耗雷达模块的门锁中,控制电路和自动解锁机制是关键的部件。控制电路采用先进的芯片技术,通过优秀的功耗控制以实现模块化管理。而自动解锁机制不仅可以通过微波信号控制实现门锁的无钥匙解锁,还能够在门锁未处理的情况下自动锁定,保障门锁的安全。 智能门锁低功耗雷达模块的主要特点是:低功耗、高灵敏度和高可靠性。该模块在进行人体检测时,可以远距离探测到距离为5-7米远处的人体信号,目标检测速度极快,而且对门锁周围的环境要求不高。同时,该模块采用了自适应自动补偿技术,能够根据不同环境的变化自动调整信号发射和接收参数,减小误检率。 在使用智能门锁低功耗雷达模块的门锁中,其功耗可以做到非常低,一组电池能够支持门锁持续使用几年左右。而且这样的智能门锁除了具有自动解锁的功能,还可与APP相互匹配,实现了远程操作的便捷性。 总的来说,智能门锁低功耗雷达模块的问世,解决了门锁安全性和省电节省方面的问题,是智能门锁材料不可或缺的一部分。作为门锁制造商,只有不断创新,利用这种新型技术,将会在行业中占据重要的地位。 除了上文所述的主要特点和优势,智能门锁低功耗雷达模块还具有以下几点: 1. 实时监测门锁周围环境变化,通过物体的距离体积和运动来确定是否有人靠近门锁,并控制门锁的开启或关闭,使得门锁更加智能化。 2. 可对门锁附件进行检测,如门挂、门应急照明灯以及紧急呼叫按钮等,并及时给出响应,确保门锁能够正常运作。这样,门锁在不受干扰的情况下,能够 保持安全通道。 3. 通过智能学习技术,能够自适应网站多种环境的变化,让智能门锁低功耗雷达模块更加准确和精细的控制门锁的开关,节约能耗并延长使用寿命。 4. 能够与其他智能电器相连,如智能家居系统、电视等,形成智能家居生态圈,更好地控制家庭访客进出,让生活更加方便。 综上所述,智能门锁低功耗雷达模块的出现,对提升门锁能耗管理和智能化有着重要作用。门锁制造商只有将这些新型技术运用到门锁产品中,才能更加贴合用户需求,满足消费市场的日益增长的智能化需求。
查看详情 查看详情
14
2022-01

微波雷达传感器雷达感应浴室镜上的应用

发布时间: : 2022-01--14
微波雷达传感器雷达感应浴室镜上的应用,如今,家用电器的智能化已成为一种常态,越来越多的人开始在自己的浴室里安装智能浴室镜。但是还有很多人对智能浴镜的理解还不够深入,今天就来说说这个话题。 什么是智能浴室镜?智慧型浴室镜,顾名思义,就是卫浴镜子智能化升级,入门级产品基本具备了彩灯和镜面触摸功能,更高档次的产品安装有微波雷达传感器智能感应,当感应到有人接近到一定距离即可开启亮灯或者亮屏操作,也可三色无极调,智能除雾,语音交互,日程安排备忘,甚至在镜子上看电视,听音乐,气象预报,问题查询,智能控制,健康管理等。 智能化雷达感应浴室镜与普通镜的区别,为什么要选TA?,就功能而言,普通浴镜价格用它没有什么压力!而且雷达感应智能浴镜会让人犹豫不决是否“值得一看”。就功能和应用而言,普通浴镜功能单一,而微波雷达传感器智能浴室镜功能创新:镜子灯光色温和亮度可以自由调节,镜面还可以湿手触控,智能除雾,既环保又健康! 尽管智能浴镜比较新颖,但功能丰富,体验感更好,特别是入门级的智能浴镜,具有基础智能化功能,真的适合想体验下智能化的小伙伴们。 给卫生间安装微波雷达传感器浴室镜安装注意什么? ①确定智能浴室镜的安装位置,因为是安装时在墙壁上打孔,一旦安装后一般无法移动位置。 ②在选购雷达感应智能浴室镜时,根据安装位置确定镜子的形状和尺寸。 ③确定智能浴镜的安装位置后,在布线时为镜子预留好电源线。 ④确定微波雷达传感器智能浴镜的安装高度,一般智能浴镜的标准安装高度约85cm(从地砖到镜子底),具体安装高度要根据家庭成员的身高及使用习惯来决定。 ⑤镜面遇到污渍,可用酒精或30%清洁稀释液擦洗,平时可用干毛巾养护,注意多通风。
查看详情 查看详情
10
2024-10

低延时通信UWB射频芯片技术解析与应用前景

发布时间: : 2024-10--10
随着科技的不断发展,通信技术也在不断革新,其中超宽带(Ultra-Wideband,简称UWB)技术作为一种新兴的无线通信技术,因其低延时、高带宽、高精度定位等特点,逐渐受到业界的广泛关注。UWB射频芯片作为实现UWB通信的核心部件,其性能和技术指标直接影响着整个通信系统的稳定性和可靠性。本文将深入剖析低延时通信UWB射频芯片的技术原理、应用场景以及未来发展趋势,旨在为读者提供全面而深入的了解。 一、UWB技术概述 UWB技术是一种利用短脉冲进行信息传输的无线通信技术,其脉冲宽度通常在纳秒级,因此具有高的时间分辨率和空间分辨率。与传统的无线通信技术相比,UWB技术具有更低的功耗、更高的数据传输速率和更准确的定位能力,因此在无线个人局域网、实时定位系统、智能家居等领域有着广泛的应用前景。 二、低延时通信UWB射频芯片的技术原理 低延时通信UWB射频芯片是实现UWB通信的关键部件,其技术原理主要包括信号生成、调制与解调、信号放大与滤波等几个方面。 信号生成 UWB射频芯片通过内部的高精度时钟和脉冲发生器,产生短的脉冲信号。这些脉冲信号具有高的时间分辨率,能够确保信息的快速传输和准确定位。 调制与解调 为了将信息有效地加载到脉冲信号上,UWB射频芯片采用了特定的调制方式,如脉冲位置调制(PPM)、脉冲幅度调制(PAM)等。在接收端,射频芯片则通过相应的解调方式,将信息从脉冲信号中提取出来。 信号放大与滤波 由于UWB信号在传输过程中会受到各种干扰和衰减,因此射频芯片需要具备较高的信号放大能力和滤波性能。通过采用先进的低噪声放大器和滤波器技术,可以有效地提高信号的接收灵敏度和抗干扰能力。 三、低延时通信UWB射频芯片的应用场景 无线个人局域网 在无线个人局域网中,UWB技术可以实现高速、低延时的数据传输,为用户提供更加流畅的网络体验。低延时通信UWB射频芯片的应用,可以显著提升无线个人局域网的性能,满足用户对高速、实时通信的需求。 实时定位系统 UWB技术的高精度定位能力使其在实时定位系统中具有广泛的应用。低延时通信UWB射频芯片可以实现快速、准确的信号传输和定位计算,为室内导航、物流追踪、人员定位等场景提供强有力的技术支持。 智能家居 智能家居系统需要实现各种设备之间的互联互通,以实现智能化控制和管理。低延时通信UWB射频芯片可以提供高速、稳定的数据传输,确保智能家居系统的实时响应和稳定运行。 四、低延时通信UWB射频芯片的发展趋势 集成化和小型化 随着集成电路技术的不断发展,UWB射频芯片将实现更高的集成度和更小的体积。这将有助于降低系统的成本,提高系统的可靠性,并推动UWB技术在更多领域的应用。 高性能与低功耗 未来,低延时通信UWB射频芯片将追求更高的性能和更低的功耗。通过采用先进的工艺和设计技术,可以实现更高的数据传输速率、更低的功耗和更长的使用寿命。 多功能化 为了满足不同应用场景的需求,未来的UWB射频芯片将具备更多的功能。例如,除了基本的通信和定位功能外,还可能集成传感器接口、安全加密等功能,以提供更加全面的解决方案。 五、结论 低延时通信UWB射频芯片作为实现UWB通信的核心部件,具有广阔的应用前景和巨大的市场潜力。随着技术的不断进步和应用场景的拓展,UWB射频芯片将在无线个人局域网、实时定位系统、智能家居等领域发挥越来越重要的作用。同时,我们也应看到,UWB技术的发展仍面临一些挑战,如标准化问题、成本问题等。因此,我们需要在不断推动技术创新的同时,加强产业合作和标准制定,以促进UWB技术的健康发展。 总之,低延时通信UWB射频芯片是无线通信领域的一项重要技术突破,它将为我们带来更加高效、便捷、智能的通信体验。我们有理由相信,在不久的将来,UWB技术将在更多领域得到广泛应用,为人们的生活带来更多便利和惊喜。
查看详情 查看详情
09
2024-10

超宽带通信UWB芯片应用

发布时间: : 2024-10--09
在现代通信技术日新月异的今天,超宽带通信(Ultra-Wideband,简称UWB)技术以其独特的优势,正逐渐成为无线通信领域的一匹黑马。UWB技术以其高速率、低功耗、高安全性等特点,为无线通信领域带来了全新的发展机遇。而UWB芯片作为实现UWB技术的核心部件,其应用前景更是广阔无垠。 UWB技术作为一种新型的无线通信技术,其传输速度远超传统的无线通信技术,而且功耗更低,安全性更高。这使得UWB芯片在智能家居、物联网、无人驾驶等领域有着广泛的应用前景。随着技术的不断发展和完善,UWB芯片的应用将越来越广泛,为人们的生活带来更多便利和惊喜。 二、超宽带通信UWB技术原理与特点 UWB技术是一种利用短脉冲进行无线传输的技术。其信号带宽通常超过500MHz,有时甚至可以达到数GHz。这种超宽的带宽使得UWB技术具有许多独特的优势。 首先,UWB技术具有高的传输速度。由于其信号带宽宽,因此可以实现高速的数据传输,满足现代通信对于速度的高要求。 其次,UWB技术具有低功耗的特点。由于UWB信号的脉冲宽度短,因此可以在保证传输速度的同时,降低设备的功耗,延长设备的使用寿命。 此外,UWB技术还具有高安全性的优势。由于其信号的特性,使得UWB通信不易被干扰和破解,保证通信的安全性。 这些特点使得UWB技术在智能家居、物联网、无人驾驶等领域有着广泛的应用前景。在这些领域中,UWB芯片作为实现UWB技术的核心部件,发挥着举足轻重的作用。 三、超宽带通信UWB芯片的主要应用领域 智能家居领域:在智能家居领域,UWB芯片可以用于实现精准的定位和通信功能。通过UWB技术,我们可以实现对家居设备的准确控制,提高家居生活的便捷性和舒适性。例如,利用UWB芯片可以实现智能门锁的精准识别、智能照明系统的自动调节等功能。 物联网领域:在物联网领域,UWB芯片同样具有广泛的应用前景。由于其高速率、低功耗的特点,超宽带通信UWB芯片可以用于实现物联网设备之间的快速、稳定的数据传输。同时,UWB技术的高安全性也可以保证物联网设备之间的通信安全,防止数据泄露和被攻击。 无人驾驶领域:在无人驾驶领域,UWB芯片的应用也十分重要。利用UWB技术的高精度定位功能,我们可以实现对无人驾驶车辆的准确控制和导航。这不仅可以提高无人驾驶车辆的安全性和稳定性,还可以提升车辆的行驶效率和乘坐体验。 随着技术的不断发展和完善,UWB芯片在更多领域的应用也将不断拓展。未来,我们可以期待看到UWB芯片在医疗、工业、军事等领域发挥更大的作用。 四、超宽带通信UWB芯片的技术挑战与发展方向 尽管UWB芯片具有广泛的应用前景,但目前在技术方面仍面临一些挑战。 首先,标准化问题是制约UWB芯片发展的重要因素之一。目前,UWB技术尚未形成统一的国际标准,这导致了不同厂商生产的UWB芯片在兼容性和互通性方面存在问题。因此,推动UWB技术的标准化进程,是解决这一问题的关键。 其次,成本因素也是制约UWB芯片普及的一个重要因素。由于目前UWB芯片的生产成本较高,导致其在市场上的价格较高,难以被广泛应用。因此,降低UWB芯片的生产成本,提高其性价比,是推动UWB芯片普及的关键。 针对这些挑战,未来UWB芯片技术的发展方向主要包括以下几个方面: 一是加强技术创新,提升UWB芯片的性能和稳定性。通过不断研发新的技术和工艺,提高UWB芯片的传输速度、降低功耗、增强安全性等方面的性能,以满足不同领域的应用需求。 二是推动产业链完善,降低UWB芯片的生产成本。通过优化生产工艺、提高生产效率、降低原材料成本等方式,降低UWB芯片的生产成本,使其更具市场竞争力。 三是加强国际合作与交流,推动UWB技术的标准化进程。通过加强与国际同行的合作与交流,共同制定和推广UWB技术的国际标准,促进超宽带通信UWB芯片在不同国家和地区之间的互通和兼容。 五、结论 超宽带通信UWB芯片作为一种新型的无线通信技术,具有广阔的应用前景和巨大的发展潜力。通过加强技术创新和产业链完善,我们可以期待看到UWB芯片在更多领域发挥更大的作用,为人们的生活带来更多便利和惊喜。同时,我们也需要关注UWB技术面临的挑战和问题,并积寻求解决方案,推动UWB技术的持续发展和普及。
查看详情 查看详情
08
2024-10

高精定位超宽带UWB芯片价格解析

发布时间: : 2024-10--08
在信息化和智能化浪潮的推动下,定位技术的精度要求越来越高。超宽带(UWB)技术以其独特的优势,在定位领域发挥着越来越重要的作用。高精定位超宽带UWB芯片作为实现高精度定位的核心组件,其价格受到市场的广泛关注。本文将深入探讨高精定位超宽带UWB芯片的价格因素及市场趋势,帮助读者更好地了解这一领域。 一、UWB技术概述 超宽带(UWB)技术是一种利用纳秒至微秒级的非正弦波窄脉冲传输数据的无线通信技术。它具有传输速度快、功耗低、抗多径干扰能力强等优点,在定位领域具有显著优势。与传统的GPS、蓝牙等定位技术相比,UWB技术能够实现更高精度的定位,适用于室内和室外多种场景。 近年来,随着物联网、自动驾驶等领域的快速发展,UWB技术的应用范围不断扩大。越来越多的设备开始采用UWB芯片来实现高精度定位,推动了UWB芯片市场的蓬勃发展。 二、高精定位UWB芯片的市场现状 目前,UWB芯片市场呈现出快速增长的态势。随着智能手机、可穿戴设备、智能家居等市场的不断扩大,对高精度定位的需求也在不断增加。同时,物联网、自动驾驶等领域的快速发展也为UWB芯片市场带来了巨大的增长潜力。 在市场上,已经有多家厂商推出了高精定位UWB芯片产品。这些芯片在性能、功耗、成本等方面各有优势,为不同领域的应用提供了多样化的选择。然而,由于UWB技术仍处于发展初期,市场竞争格局尚未完全形成,价格也存在一定的波动。 三、高精定位UWB芯片价格的影响因素 技术复杂度 UWB芯片的设计和制造涉及复杂的无线通信技术、信号处理技术和集成电路技术等。这些技术的复杂程度直接影响了芯片的研发成本和制造成本。因此,技术复杂度是影响高精定位UWB芯片价格的重要因素之一。随着技术的进步和成熟,芯片的设计和制造成本有望逐渐降低,从而推动价格的下降。 生产工艺与材料成本 高精定位UWB芯片的生产需要采用先进的生产工艺和高质量的材料。生产工艺的复杂性和材料成本的高低都会对芯片的终价格产生影响。随着生产工艺的改进和材料成本的降低,芯片的生产成本将逐渐降低,进而影响到市场价格。 市场竞争与供需关系 市场竞争是影响高精定位UWB芯片价格的另一个重要因素。目前,市场上存在多家芯片供应商,他们之间的竞争加剧导致了价格的波动。同时,供需关系也会对价格产生影响。当市场需求大于供应时,价格往往会上涨;反之,当供应过剩时,价格则会下降。 政策与法规因素 政府对科技创新和产业发展的支持政策也会对高精定位UWB芯片价格产生影响。例如,政府可能会通过提供资金支持、税收优惠等方式鼓励企业投入研发和生产UWB芯片,从而降低芯片的成本和价格。此外,国际贸易法规也会对芯片的进出口价格产生影响。 四、高精定位UWB芯片价格趋势分析 根据目前的市场情况和技术发展趋势,我们可以对高精定位UWB芯片的价格趋势进行初步分析。随着技术的不断进步和市场的不断扩大,UWB芯片的生产成本有望逐渐降低。同时,市场竞争的加剧也将推动价格的下降。然而,需要注意的是,由于UWB技术仍处于发展初期,未来可能会出现新的技术突破和市场变化,这些因素都可能对价格产生影响。因此,我们需要密切关注市场动态和技术发展趋势,以更准确地预测未来的价格走势。 五、如何选择合适的UWB芯片 在选择高精定位UWB芯片时,我们需要综合考虑多个因素。首先,我们要关注芯片的性能指标,如定位精度、传输速度、功耗等,以确保其满足应用需求。其次,我们需要考虑芯片的成本和价格因素,以确保其在预算范围内。此外,我们还要关注芯片的兼容性和可扩展性,以便在未来能够方便地进行升级和扩展。我们还可以参考市场上的用户评价和案例,了解芯片在实际应用中的表现。 结语: 高精定位超宽带UWB芯片作为实现高精度定位的核心组件,在物联网、自动驾驶等领域具有广阔的应用前景。随着技术的不断进步和市场的不断扩大,其价格有望逐渐降低。然而,我们也需要密切关注市场动态和技术发展趋势,以便及时应对可能出现的价格波动和技术变化。通过选择合适的UWB芯片,我们可以为各种应用提供高精度、可靠的定位服务,推动相关领域的快速发展。
查看详情 查看详情
上一页
1
2
...
300

地址:深圳市宝安区西乡街道麻布社区宝安互联网产业基地A区6栋7栋7706

邮箱:Sales@ferry-semi.com

版权所有©2020  深圳市飞睿科技有限公司  粤ICP备2020098907号    飞睿科技微波雷达wifi模块网站地图

 

免责声明:本网站部分图片和文字内容可能来源于网络,转载目的在于传递更多信息,并不代表本网站赞同其观点或证实其内容的真实性。如涉及作品内容、版权和其它问题,请在30日内与本网站联系,我们将在第一时间删除内容!本站拥有对此声明的最终解释权。