这是描述信息
兆易创新GD32-GigaDevice-兆易创新代理

兆易创新GD32F107VCT6-GD32 ARM Cortex-M3 Microcontroller

兆易创新GD32F107VCT6-GD32 ARM Cortex-M3 Microcontroller GigaDevice Semiconductor Inc. GD32F107xx ARM® Cortex™-M3 32-bit MCU Datasheet General description The GD32F107xx device belongs to the connectivity line of GD32 MCU Family. It is a 32-bit general-purpose microcontroller based on the ARM® Cortex™-M3 RISC core with enhanced connectivity performance and best ratio in terms of processing power, reduced power consumption and peripheral set. The Cortex™-M3 is a next generation processor core which is tightly coupled with a Nested Vectored Interrupt Controller (NVIC), SysTick timer and advanced debug support. The GD32F107xx device incorporates the ARM® Cortex™-M3 32-bit processor core operating at 108 MHz frequency with Flash accesses zero wait states to obtain maximum efficiency. It provides up to 1 MB on-chip Flash memory and 96 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer up to two 12-bit ADCs, up to two 12-bit DACs, up to four general-purpose 16-bit timers, two basic timers plus two PWM advanced-control timer, as well as standard and advanced communication interfaces: up to three SPIs, two I2Cs, three USARTs, two UARTs, two I2Ss, two CANs, an USBFS and an Ethernet MAC. The device operates from a 2.6 to 3.6 V power supply and available in –40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications. The above features make the GD32F107xx devices suitable for a wide range of interconnection applications, especially in areas such as industrial control, motor drives, power monitor and alarm systems, consumer and handheld equipment, POS, vehicle GPS, LED display and so on.   Device information Table 2-1. GD32F107xx devices features and peripheral list   Part Number GD32F107xx   RB RC RD RE RF RG VB VC Flash (KB) 128 256 384 512 768 1024 128 256 SRAM (KB) 96 96 96 96 96 96 96 96 Timers GPTM(16 bit) 4 (1-4) 4 (1-4) 4 (1-4) 4 (1-4) 4 (1-4) 4 (1-4) 4 (1-4) 4 (1-4)   Advanced TM(16 bit) 1 (0) 1 (0) 2 (0,7) 2 (0,7) 2 (0,7) 2 (0,7) 1 (0) 1 (0)   SysTick 1 1 1 1 1 1 1 1   Basic TM(16 bit) 2 (5-6) 2 (5-6) 2 (5-6) 2 (5-6) 2 (5-6) 2 (5-6) 2 (5-6) 2 (5-6)   Watchdog 2 2 2 2 2 2 2 2   RTC 1 1 1 1 1 1 1 1 Connectivity U(S)ART 5 5 5 5 5 5 5 5   I2C 1 (0) 1 (0) 2 (0-1) 2 (0-1) 2 (0-1) 2 (0-1) 1 (0) 1 (0)   SPI 3 (0-2) 3 (0-2) 3 (0-2) 3 (0-2) 3 (0-2) 3 (0-2) 3 (0-2) 3 (0-2)   I2S 2 (1-2) 2 (1-2) 2 (1-2) 2 (1-2) 2 (1-2) 2 (1-2) 2 (1-2) 2 (1-2)   CAN 2.0B 2 2 2 2 2 2 2 2   USBFS 1 1 1 1 1 1 1 1   Ethernet MAC 1 1 1 1 1 1 1 1 GPIO 51 51 51 51 51 51 80 80 EXMC 0 0 0 0 0 0 1 1
兆易创新GD32-GigaDevice-兆易创新代理
产品描述

兆易创新GD32F107VCT6-GD32 ARM Cortex-M3 Microcontroller

GigaDevice Semiconductor Inc.
GD32F107xx
ARM® Cortex™-M3 32-bit MCU
Datasheet

General description

The GD32F107xx device belongs to the connectivity line of GD32 MCU Family. It is a 32-bit general-purpose microcontroller based on the ARM® Cortex™-M3 RISC core with enhanced connectivity performance and best ratio in terms of processing power, reduced power consumption and peripheral set. The Cortex™-M3 is a next generation processor core which is tightly coupled with a Nested Vectored Interrupt Controller (NVIC), SysTick timer and advanced debug support.
The GD32F107xx device incorporates the ARM® Cortex™-M3 32-bit processor core operating at 108 MHz frequency with Flash accesses zero wait states to obtain maximum efficiency. It provides up to 1 MB on-chip Flash memory and 96 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer up to two 12-bit ADCs, up to two 12-bit DACs, up to four general-purpose 16-bit timers, two basic timers plus two PWM advanced-control timer, as well as standard and advanced communication interfaces: up to three SPIs, two I2Cs, three USARTs, two UARTs, two I2Ss, two CANs, an USBFS and an Ethernet MAC.
The device operates from a 2.6 to 3.6 V power supply and available in –40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications.
The above features make the GD32F107xx devices suitable for a wide range of interconnection applications, especially in areas such as industrial control, motor drives, power monitor and alarm systems, consumer and handheld equipment, POS, vehicle GPS, LED display and so on.
 

Device information

Table 2-1. GD32F107xx devices features and peripheral list

 

Part Number

GD32F107xx

 

RB

RC

RD

RE

RF

RG

VB

VC

Flash (KB)

128

256

384

512

768

1024

128

256

SRAM (KB)

96

96

96

96

96

96

96

96

Timers

GPTM(16

bit)

4

(1-4)

4

(1-4)

4

(1-4)

4

(1-4)

4

(1-4)

4

(1-4)

4

(1-4)

4

(1-4)

 

Advanced

TM(16 bit)

1

(0)

1

(0)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

1

(0)

1

(0)

 

SysTick

1

1

1

1

1

1

1

1

 

Basic TM(16

bit)

2

(5-6)

2

(5-6)

2

(5-6)

2

(5-6)

2

(5-6)

2

(5-6)

2

(5-6)

2

(5-6)

 

Watchdog

2

2

2

2

2

2

2

2

 

RTC

1

1

1

1

1

1

1

1

Connectivity

U(S)ART

5

5

5

5

5

5

5

5

 

I2C

1

(0)

1

(0)

2

(0-1)

2

(0-1)

2

(0-1)

2

(0-1)

1

(0)

1

(0)

 

SPI

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

 

I2S

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

 

CAN 2.0B

2

2

2

2

2

2

2

2

 

USBFS

1

1

1

1

1

1

1

1

 

Ethernet

MAC

1

1

1

1

1

1

1

1

GPIO

51

51

51

51

51

51

80

80

EXMC

0

0

0

0

0

0

1

1

EXTI

16

16

16

16

16

16

16

16

ADC

Units

2

2

2

2

2

2

2

2

 

Channels

16

16

16

16

16

16

16

16

DAC

2

2

2

2

2

2

2

2

 

 

Part Number

GD32F107xx

 

VD

VE

VF

VG

ZC

ZD

ZE

ZF

ZG

Flash (KB)

384

512

768

1024

256

384

512

768

1024

SRAM (KB)

96

96

96

96

96

96

96

96

96

Timers

GPTM(16

bit)

4

(1-4)

4

(1-4)

4

(1-4)

4

(1-4)

4

(1-4)

4

(1-4)

4

(1-4)

4

(1-4)

4

(1-4)

 

Advanced

TM(16 bit)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

 

SysTick

1

1

1

1

1

1

1

1

1

 

Basic TM(16

bit)

2

(5-6)

2

(5-6)

2

(5-6)

2

(5-6)

2

(5-6)

2

(5-6)

2

(5-6)

2

(5-6)

2

(5-6)

 

Watchdog

2

2

2

2

2

2

2

2

2

 

RTC

1

1

1

1

1

1

1

1

1

Connectivity

U(S)ART

5

5

5

5

5

5

5

5

5

 

I2C

2

2

2

2

2

2

2

2

2

 

SPI

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

 

 

I2S

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

2

(1-2)

 

CAN 2.0B

2

2

2

2

2

2

2

2

2

 

USBFS

1

1

1

1

1

1

1

1

1

 

Ethernet

MAC

1

1

1

1

1

1

1

1

1

GPIO

80

80

80

80

112

112

112

112

112

EXMC

1

1

1

1

1

1

1

1

1

EXTI

16

16

16

16

16

16

16

16

16

ADC

Units

2

2

2

2

2

2

2

2

2

 

Channels

16

16

16

16

16

16

16

16

16

DAC

2

2

2

2

2

2

2

2

2

Package

LQFP100

LQFP144

 

Memory map

Table 2-3. GD32F107xx memory map

Pre-defined

Regions

 

Bus

 

Address

 

Peripherals

External

device

 

 

 

 

AHB

 

0xA000 0000 - 0xA000 0FFF

 

EXMC - SWREG

 

 

 

External RAM

 

0x9000 0000 - 0x9FFF FFFF

EXMC - PC CARD

 

 

0x7000 0000 - 0x8FFF FFFF

EXMC - NAND

 

 

 

0x6000 0000 - 0x6FFF FFFF

EXMC -

NOR/PSRAM/SRA M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Peripheral

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AHB

0x5000 0000 - 0x5003 FFFF

USBFS

 

 

0x4008 0000 - 0x4FFF FFFF

Reserved

 

 

0x4004 0000 - 0x4007 FFFF

Reserved

 

 

0x4002 BC00 - 0x4003 FFFF

Reserved

 

 

0x4002 B000 - 0x4002 BBFF

Reserved

 

 

0x4002 A000 - 0x4002 AFFF

Reserved

 

 

0x4002 8000 - 0x4002 9FFF

ENET

 

 

0x4002 6800 - 0x4002 7FFF

Reserved

 

 

0x4002 6400 - 0x4002 67FF

Reserved

 

 

0x4002 6000 - 0x4002 63FF

Reserved

 

 

0x4002 5000 - 0x4002 5FFF

Reserved

 

 

0x4002 4000 - 0x4002 4FFF

Reserved

 

 

0x4002 3C00 - 0x4002 3FFF

Reserved

 

 

0x4002 3800 - 0x4002 3BFF

Reserved

 

 

0x4002 3400 - 0x4002 37FF

Reserved

 

 

0x4002 3000 - 0x4002 33FF

CRC

 

 

0x4002 2C00 - 0x4002 2FFF

Reserved

 

 

0x4002 2800 - 0x4002 2BFF

Reserved

 

 

0x4002 2400 - 0x4002 27FF

Reserved

 

 

0x4002 2000 - 0x4002 23FF

FMC

 

 

0x4002 1C00 - 0x4002 1FFF

Reserved

 

 

0x4002 1800 - 0x4002 1BFF

Reserved

 

 

0x4002 1400 - 0x4002 17FF

Reserved

 

 

0x4002 1000 - 0x4002 13FF

RCU

 

 

0x4002 0C00 - 0x4002 0FFF

Reserved

 

 

0x4002 0800 - 0x4002 0BFF

Reserved

 

 

0x4002 0400 - 0x4002 07FF

DMA1

 

 

0x4002 0000 - 0x4002 03FF

DMA0

 

 

0x4001 8400 - 0x4001 FFFF

Reserved

 

Pre-defined

Regions

 

Bus

 

Address

 

Peripherals

 

 

0x4001 8000 - 0x4001 83FF

Reserved

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APB2

0x4001 7C00 - 0x4001 7FFF

Reserved

 

 

0x4001 7800 - 0x4001 7BFF

Reserved

 

 

0x4001 7400 - 0x4001 77FF

Reserved

 

 

0x4001 7000 - 0x4001 73FF

Reserved

 

 

0x4001 6C00 - 0x4001 6FFF

Reserved

 

 

0x4001 6800 - 0x4001 6BFF

Reserved

 

 

0x4001 5C00 - 0x4001 67FF

Reserved

 

 

0x4001 5800 - 0x4001 5BFF

Reserved

 

 

0x4001 5400 - 0x4001 57FF

Reserved

 

 

0x4001 5000 - 0x4001 53FF

Reserved

 

 

0x4001 4C00 - 0x4001 4FFF

Reserved

 

 

0x4001 4800 - 0x4001 4BFF

Reserved

 

 

0x4001 4400 - 0x4001 47FF

Reserved

 

 

0x4001 4000 - 0x4001 43FF

Reserved

 

 

0x4001 3C00 - 0x4001 3FFF

Reserved

 

 

0x4001 3800 - 0x4001 3BFF

USART0

 

 

0x4001 3400 - 0x4001 37FF

TIMER7

 

 

0x4001 3000 - 0x4001 33FF

SPI0

 

 

0x4001 2C00 - 0x4001 2FFF

TIMER0

 

 

0x4001 2800 - 0x4001 2BFF

ADC1

 

 

0x4001 2400 - 0x4001 27FF

ADC0

 

 

0x4001 2000 - 0x4001 23FF

GPIOG

 

 

0x4001 1C00 - 0x4001 1FFF

GPIOF

 

 

0x4001 1800 - 0x4001 1BFF

GPIOE

 

 

0x4001 1400 - 0x4001 17FF

GPIOD

 

 

0x4001 1000 - 0x4001 13FF

GPIOC

 

 

0x4001 0C00 - 0x4001 0FFF

GPIOB

 

 

0x4001 0800 - 0x4001 0BFF

GPIOA

 

 

0x4001 0400 - 0x4001 07FF

EXTI

 

 

0x4001 0000 - 0x4001 03FF

AFIO

 

 

 

 

 

 

 

APB1

0x4000 CC00 - 0x4000 FFFF

Reserved

 

 

0x4000 C800 - 0x4000 CBFF

Reserved

 

 

0x4000 C400 - 0x4000 C7FF

Reserved

 

 

0x4000 C000 - 0x4000 C3FF

Reserved

 

 

0x4000 8000 - 0x4000 BFFF

Reserved

 

 

0x4000 7C00 - 0x4000 7FFF

Reserved

 

 

0x4000 7800 - 0x4000 7BFF

Reserved

 

 

0x4000 7400 - 0x4000 77FF

DAC

 

 

0x4000 7000 - 0x4000 73FF

PMU

 

Pre-defined

Regions

 

Bus

 

Address

 

Peripherals

 

 

0x4000 6C00 - 0x4000 6FFF

BKP

 

 

0x4000 6800 - 0x4000 6BFF

CAN1

 

 

0x4000 6400 - 0x4000 67FF

CAN0

 

 

 

0x4000 6000 - 0x4000 63FF

Shared CAN SRAM

512 bytes

 

 

0x4000 5C00 - 0x4000 5FFF

Reserved

 

 

0x4000 5800 - 0x4000 5BFF

I2C1

 

 

0x4000 5400 - 0x4000 57FF

I2C0

 

 

0x4000 5000 - 0x4000 53FF

UART4

 

 

0x4000 4C00 - 0x4000 4FFF

UART3

 

 

0x4000 4800 - 0x4000 4BFF

USART2

 

 

0x4000 4400 - 0x4000 47FF

USART1

 

 

0x4000 4000 - 0x4000 43FF

Reserved

 

 

0x4000 3C00 - 0x4000 3FFF

SPI2/I2S2

 

 

0x4000 3800 - 0x4000 3BFF

SPI1/I2S1

 

 

0x4000 3400 - 0x4000 37FF

Reserved

 

 

0x4000 3000 - 0x4000 33FF

FWDGT

 

 

0x4000 2C00 - 0x4000 2FFF

WWDGT

 

 

0x4000 2800 - 0x4000 2BFF

RTC

 

 

0x4000 2400 - 0x4000 27FF

Reserved

 

 

0x4000 2000 - 0x4000 23FF

Reserved

 

 

0x4000 1C00 - 0x4000 1FFF

Reserved

 

 

0x4000 1800 - 0x4000 1BFF

Reserved

 

 

0x4000 1400 - 0x4000 17FF

TIMER6

 

 

0x4000 1000 - 0x4000 13FF

TIMER5

 

 

0x4000 0C00 - 0x4000 0FFF

TIMER4

 

 

0x4000 0800 - 0x4000 0BFF

TIMER3

 

 

0x4000 0400 - 0x4000 07FF

TIMER2

 

 

0x4000 0000 - 0x4000 03FF

TIMER1

 

 

 

 

 

SRAM

 

 

 

 

 

AHB

0x2007 0000 - 0x3FFF FFFF

Reserved

 

 

0x2006 0000 - 0x2006 FFFF

Reserved

 

 

0x2003 0000 - 0x2005 FFFF

Reserved

 

 

0x2002 0000 - 0x2002 FFFF

Reserved

 

 

0x2001 C000 - 0x2001 FFFF

Reserved

 

 

0x2001 8000 - 0x2001 BFFF

Reserved

 

 

0x2000 5000 - 0x2001 7FFF

 

SRAM

 

 

0x2000 0000 - 0x2000 4FFF

 

 

Code

 

AHB

0x1FFF F810 - 0x1FFF FFFF

Reserved

 

 

0x1FFF F800 - 0x1FFF F80F

Option Bytes

 

 

0x1FFF F000 - 0x1FFF F7FF

Boot loader

 

 

Pre-defined

Regions

 

Bus

 

Address

 

Peripherals

 

 

 

0x1FFF C010 - 0x1FFF EFFF

 

0x1FFF C000 - 0x1FFF C00F

0x1FFF B000 - 0x1FFF BFFF

0x1FFF 7A10 - 0x1FFF AFFF

Reserved

0x1FFF 7800 - 0x1FFF 7A0F

Reserved

0x1FFF 0000 - 0x1FFF 77FF

Reserved

0x1FFE C010 - 0x1FFE FFFF

Reserved

0x1FFE C000 - 0x1FFE C00F

Reserved

0x1001 0000 - 0x1FFE BFFF

Reserved

0x1000 0000 - 0x1000 FFFF

Reserved

0x083C 0000 - 0x0FFF FFFF

Reserved

0x0830 0000 - 0x083B FFFF

Reserved

0x0810 0000 - 0x082F FFFF

 

Main Flash

0x0802 0000 - 0x080F FFFF

0x0800 0000 - 0x0801 FFFF

0x0030 0000 - 0x07FF FFFF

Reserved

0x0010 0000 - 0x002F FFFF

 

Aliased to Main Flash or Boot loader

0x0002 0000 - 0x000F FFFF

0x0000 0000 - 0x0001 FFFF

 

GD32F107Zx LQFP144 pin definitions

Table 2-4. GD32F107Zx LQFP144 pin definitions

 

 

Pin Name

 

 

Pins

 

 

Pin Type(1)

 

 

I/O Level(2)

 

 

Functions description

 

PE2

 

1

 

I/O

 

5VT

Default: PE2

Alternate: TRACECK, EXMC_A23

 

PE3

 

2

 

I/O

 

5VT

Default: PE3

Alternate: TRACED0, EXMC_A19

 

PE4

 

3

 

I/O

 

5VT

Default: PE4 Alternate:TRACED1, EXMC_A20

 

PE5

 

4

 

I/O

 

5VT

Default: PE5 Alternate:TRACED2, EXMC_A21

 

PE6

 

5

 

I/O

 

5VT

Default: PE6

Alternate:TRACED3, EXMC_A22

VBAT

6

P

 

Default: VBAT

PC13-

TAMPER- RTC

 

7

 

I/O

 

 

Default: PC13

Alternate: TAMPER-RTC

PC14- OSC32IN

 

8

 

I/O

 

Default: PC14 Alternate: OSC32IN

PC15- OSC32OUT

 

9

 

I/O

 

Default: PC15 Alternate: OSC32OUT

 

PF0

 

10

 

I/O

 

5VT

Default: PF0 Alternate: EXMC_A0

 

PF1

 

11

 

I/O

 

5VT

Default: PF1

Alternate: EXMC_A1

 

PF2

 

12

 

I/O

 

5VT

Default: PF2

Alternate: EXMC_A2

 

PF3

 

13

 

I/O

 

5VT

Default: PF3

Alternate: EXMC_A3

 

PF4

 

14

 

I/O

 

5VT

Default: PF4

Alternate: EXMC_A4

 

PF5

 

15

 

I/O

 

5VT

Default: PF5 Alternate: EXMC_A5

VSS_5

16

P

 

Default: VSS_5

VDD_5

17

P

 

Default: VDD_5

PF6

18

I/O

 

Default: PF6

 

 

 

Pin Name

 

 

Pins

 

 

Pin Type(1)

 

 

I/O Level(2)

 

 

Functions description

 

 

 

 

Alternate: EXMC_NIORD

PF7

19

I/O

 

Default: PF7

 

 

 

 

Alternate: EXMC_NREG

PF8

20

I/O

 

Default: PF8

 

 

 

 

Alternate: EXMC_NIOWR

PF9

21

I/O

 

Default: PF9

 

 

 

 

Alternate: EXMC_CD

PF10

22

I/O

 

Default: PF10

 

 

 

 

Alternate: EXMC_INTR

OSCIN

23

I

 

Default: OSCIN

 

 

 

 

Remap: PD0

OSCOUT

24

O

 

Default: OSCOUT

 

 

 

 

Remap: PD1

NRST

25

I/O

 

Default: NRST

PC0

26

I/O

 

Default: PC0

 

 

 

 

Alternate: ADC01_IN10

 

 

 

 

Default: PC1

PC1

27

I/O

 

Alternate: ADC01_IN11, ETH_MII_MDC,

 

 

 

 

ETH_RMII_MDC

PC2

28

I/O

 

Default: PC2

 

 

 

 

Alternate: ADC01_IN12, ETH_MII_TXD2

PC3

29

I/O

 

Default: PC3

 

 

 

 

Alternate: ADC01_IN13, ETH_MII_TX_CLK

VSSA

30

P

 

Default: VSSA

VREF-

31

P

 

Default: VREF-

VREF+

32

P

 

Default: VREF+

VDDA

33

P

 

Default: VDDA

 

 

 

 

Default: PA0

PA0-WKUP

34

I/O

 

Alternate: WKUP, USART1_CTS, ADC01_IN0,

TIMER1_CH0, TIMER1_ETI, TIMER4_CH0,

 

 

 

 

TIMER7_ETI, ETH_MII_CRS

 

 

 

 

Default: PA1

PA1

35

I/O

 

Alternate: USART1_RTS, ADC01_IN1,

TIMER1_CH1, TIMER4_CH1,

 

 

 

 

ETH_MII_RX_CLK, ETH_RMII_REF_CLK

 

 

 

 

Default: PA2

PA2

36

I/O

 

Alternate: USART1_TX, ADC01_IN2,

TIMER1_CH2, TIMER4_CH2, ETH_MII_MDIO,

 

 

 

 

ETH_RMII_MDIO

 

 

 

Pin Name

 

 

Pins

 

 

Pin Type(1)

 

 

I/O Level(2)

 

 

Functions description

 

 

 

 

Default: PA3

PA3

37

I/O

 

Alternate: USART1_RX, ADC01_IN3,

 

 

 

 

TIMER1_CH3, TIMER4_CH3, ETH_MII_COL

VSS_4

38

P

 

Default: VSS_4

VDD_4

39

P

 

Default: VDD_4

 

 

 

 

Default: PA4

PA4

40

I/O

 

Alternate: SPI0_NSS, USART1_CK,

ADC01_IN4, DAC_OUT0

 

 

 

 

Remap:SPI2_NSS, I2S2_WS

PA5

41

I/O

 

Default: PA5

 

 

 

 

Alternate: SPI0_SCK, ADC01_IN5, DAC_OUT1

 

 

 

 

Default: PA6

PA6

42

I/O

 

Alternate: SPI0_MISO, ADC01_IN6,

TIMER2_CH0, TIMER7_BKIN

 

 

 

 

Remap: TIMER0_BKIN

 

 

 

 

Default: PA7

 

 

 

 

Alternate: SPI0_MOSI, ADC01_IN7,

PA7

43

I/O

 

TIMER2_CH1, TIMER7_CH0_ON,

 

 

 

 

ETH_MII_RX_DV, ETH_RMII_CRS_DV

 

 

 

 

Remap: TIMER0_CH0_ON

 

 

 

 

Default: PC4

PC4

44

I/O

 

Alternate: ADC01_IN14, ETH_MII_RXD0,

 

 

 

 

ETH_RMII_RXD0

 

 

 

 

Default: PC5

PC5

45

I/O

 

Alternate: ADC01_IN15, ETH_MII_RXD1,

 

 

 

 

ETH_RMII_RXD1

 

 

 

 

Default: PB0

PB0

46

I/O

 

Alternate: ADC01_IN8, TIMER2_CH2,

TIMER7_CH1_ON, ETH_MII_RXD2

 

 

 

 

Remap: TIMER0_CH1_ON

 

 

 

 

Default: PB1

PB1

47

I/O

 

Alternate: ADC01_IN9, TIMER2_CH3,

TIMER7_CH2_ON, ETH_MII_RXD3

 

 

 

 

Remap: TIMER0_CH2_ON

PB2

48

I/O

5VT

Default: PB2, BOOT1

PF11

49

I/O

5VT

Default: PF11

 

 

 

 

Alternate: EXMC_NIOS16

PF12

50

I/O

5VT

Default: PF12

 

 

 

 

Alternate: EXMC_A6

 

 

 

Pin Name

 

 

Pins

 

 

Pin Type(1)

 

 

I/O Level(2)

 

 

Functions description

VSS_6

51

P

 

Default: VSS_6

VDD_6

52

P

 

Default: VDD_6

 

PF13

 

53

 

I/O

 

5VT

Default: PF13 Alternate: EXMC_A7

 

PF14

 

54

 

I/O

 

5VT

Default: PF14

Alternate: EXMC_A8

 

PF15

 

55

 

I/O

 

5VT

Default: PF15 Alternate: EXMC_A9

 

PG0

 

56

 

I/O

 

5VT

Default: PG0 Alternate: EXMC_A10

 

PG1

 

57

 

I/O

 

5VT

Default: PG1

Alternate: EXMC_A11

 

PE7

 

58

 

I/O

 

5VT

Default: PE7 Alternate: EXMC_D4 Remap: TIMER0_ETI

 

PE8

 

59

 

I/O

 

5VT

Default: PE8 Alternate: EXMC_D5

Remap: TIMER0_CH0_ON

 

PE9

 

60

 

I/O

 

5VT

Default: PE9 Alternate: EXMC_D6 Remap: TIMER0_CH0

VSS_7

61

P

 

Default: VSS_7

VDD_7

62

P

 

Default: VDD_7

 

PE10

 

63

 

I/O

 

5VT

Default: PE10 Alternate: EXMC_D7

Remap: TIMER0_CH1_ON

 

PE11

 

64

 

I/O

 

5VT

Default: PE11 Alternate: EXMC_D8 Remap: TIMER0_CH1

 

PE12

 

65

 

I/O

 

5VT

Default: PE12 Alternate: EXMC_D9

Remap: TIMER0_CH2_ON

 

PE13

 

66

 

I/O

 

5VT

Default: PE13 Alternate: EXMC_D10

Remap: TIMER0_CH2

 

PE14

 

67

 

I/O

 

5VT

Default: PE14 Alternate: EXMC_D11

Remap: TIMER0_CH3

PE15

68

I/O

5VT

Default: PE15

 

 

 

Pin Name

 

 

Pins

 

 

Pin Type(1)

 

 

I/O Level(2)

 

 

Functions description

 

 

 

 

Alternate: EXMC_D12

Remap: TIMER0_BKIN

 

 

PB10

 

 

69

 

 

I/O

 

 

5VT

Default: PB10

Alternate: I2C1_SCL, USART2_TX, ETH_MII_RX_ER

Remap: TIMER1_CH2

 

 

PB11

 

 

70

 

 

I/O

 

 

5VT

Default: PB11

Alternate: I2C1_SDA, USART2_RX, ETH_MII_TX_EN, ETH_RMII_TX_EN

Remap: TIMER1_CH3

VSS_1

71

P

 

Default: VSS_1

VDD_1

72

P

 

Default: VDD_1

 

 

PB12

 

 

73

 

 

I/O

 

 

5VT

Default: PB12

Alternate: SPI1_NSS, I2C1_SMBA, USART2_CK, TIMER0_BKIN, I2S1_WS, CAN1_RX, ETH_MII_TXD0, ETH_RMII_TXD0

 

 

PB13

 

 

74

 

 

I/O

 

 

5VT

Default: PB13

Alternate: SPI1_SCK, USART2_CTS, TIMER0_CH0_ON, I2S1_CK, CAN1_TX, ETH_MII_TXD1, ETH_RMII_TXD1

 

PB14

 

75

 

I/O

 

5VT

Default: PB14

Alternate: SPI1_MISO, USART2_RTS, TIMER0_CH1_ON

 

PB15

 

76

 

I/O

 

5VT

Default: PB15

Alternate: SPI1_MOSI, TIMER0_CH2_ON, I2S1_SD

 

 

PD8

 

 

77

 

 

I/O

 

 

5VT

Default: PD8 Alternate: EXMC_D13

Remap: USART2_TX, ETH_MII_RX_DV,

ETH_RMII_CRS_DV

 

 

PD9

 

 

78

 

 

I/O

 

 

5VT

Default: PD9 Alternate: EXMC_D14

Remap: USART2_RX, ETH_MII_RXD0,

ETH_RMII_RXD0

 

 

PD10

 

 

79

 

 

I/O

 

 

5VT

Default: PD10 Alternate: EXMC_D15

Remap: USART2_CK, ETH_MII_RXD1,

ETH_RMII_RXD1

PD11

80

I/O

5VT

Default: PD11

 

 

 

Pin Name

 

 

Pins

 

 

Pin Type(1)

 

 

I/O Level(2)

 

 

Functions description

 

 

 

 

Alternate: EXMC_A16

Remap: USART2_CTS, ETH_MII_RXD2

 

 

PD12

 

 

81

 

 

I/O

 

 

5VT

Default: PD12 Alternate: EXMC_A17

Remap: TIMER3_CH0, USART2_RTS,

ETH_MII_RXD3

 

PD13

 

82

 

I/O

 

5VT

Default: PD13 Alternate: EXMC_A18 Remap: TIMER3_CH1

VSS_8

83

P

 

Default: VSS_8

VDD_8

84

P

 

Default: VDD_8

 

PD14

 

85

 

I/O

 

5VT

Default: PD14 Alternate: EXMC_D0

Remap: TIMER3_CH2

 

PD15

 

86

 

I/O

 

5VT

Default: PD15 Alternate: EXMC_D1 Remap: TIMER3_CH3

 

PG2

 

87

 

I/O

 

5VT

Default: PG2 Alternate: EXMC_A12

 

PG3

 

88

 

I/O

 

5VT

Default: PG3

Alternate: EXMC_A13

 

PG4

 

89

 

I/O

 

5VT

Default: PG4

Alternate: EXMC_A14

 

PG5

 

90

 

I/O

 

5VT

Default: PG5

Alternate: EXMC_A15

 

PG6

 

91

 

I/O

 

5VT

Default: PG6

Alternate: EXMC_INT1

 

PG7

 

92

 

I/O

 

5VT

Default: PG7 Alternate: EXMC_INT2

PG8

93

I/O

5VT

Default: PG8

VSS_9

94

P

 

Default: VSS_9

VDD_9

95

P

 

Default: VDD_9

 

PC6

 

96

 

I/O

 

5VT

Default: PC6

Alternate: I2S1_MCK, TIMER7_CH0 Remap: TIMER2_CH0

 

PC7

 

97

 

I/O

 

5VT

Default: PC7

Alternate: I2S2_MCK, TIMER7_CH1 Remap: TIMER2_CH1

PC8

98

I/O

5VT

Default: PC8

 

 

 

Pin Name

 

 

Pins

 

 

Pin Type(1)

 

 

I/O Level(2)

 

 

Functions description

 

 

 

 

Alternate: TIMER7_CH2

Remap: TIMER2_CH2

 

PC9

 

99

 

I/O

 

5VT

Default: PC9

Alternate: TIMER7_CH3 Remap: TIMER2_CH3

 

PA8

 

100

 

I/O

 

5VT

Default: PA8

Alternate: USART0_CK, TIMER0_CH0, CK_OUT0, USBFS_SOF

 

PA9

 

101

 

I/O

 

5VT

Default: PA9

Alternate: USART0_TX, TIMER0_CH1, USBFS_VBUS

 

PA10

 

102

 

I/O

 

5VT

Default: PA10

Alternate: USART0_RX, TIMER0_CH2, USBFS_ID

 

PA11

 

103

 

I/O

 

5VT

Default: PA11

Alternate: USART0_CTS, CAN0_RX, USBFS_DM, TIMER0_CH3

 

PA12

 

104

 

I/O

 

5VT

Default: PA12

Alternate: USART0_RTS, USBFS_DP, CAN0_TX, TIMER0_ETI

 

PA13

 

105

 

I/O

 

5VT

Default: JTMS, SWDIO Remap: PA13

NC

106

 

 

-

VSS_2

107

P

 

Default: VSS_2

VDD_2

108

P

 

Default: VDD_2

 

PA14

 

109

 

I/O

 

5VT

Default: JTCK, SWCLK

Remap: PA14

 

 

PA15

 

 

110

 

 

I/O

 

 

5VT

Default: JTDI

Alternate: SPI2_NSS, I2S2_WS

Remap: TIMER1_CH0, TIMER1_ETI, PA15, SPI0_NSS

 

PC10

 

111

 

I/O

 

5VT

Default: PC10 Alternate: UART3_TX

Remap: USART2_TX, SPI2_SCK, I2S2_CK

 

PC11

 

112

 

I/O

 

5VT

Default: PC11 Alternate: UART3_RX

Remap: USART2_RX, SPI2_MISO

 

PC12

 

113

 

I/O

 

5VT

Default: PC12 Alternate: UART4_TX

 

 

 

Pin Name

 

 

Pins

 

 

Pin Type(1)

 

 

I/O Level(2)

 

 

Functions description

 

 

 

 

Remap: USART2_CK, SPI2_MOSI, I2S2_SD

 

PD0

 

114

 

I/O

 

5VT

Default: PD0 Alternate: EXMC_D2 Remap: CAN0_RX

 

PD1

 

115

 

I/O

 

5VT

Default: PD1 Alternate: EXMC_D3

Remap: CAN0_TX

 

PD2

 

116

 

I/O

 

5VT

Default: PD2

Alternate: TIMER2_ETI, UART4_RX

 

PD3

 

117

 

I/O

 

5VT

Default: PD3 Alternate: EXMC_CLK

Remap: USART1_CTS

 

PD4

 

118

 

I/O

 

5VT

Default: PD4 Alternate: EXMC_NOE

Remap: USART1_RTS

 

PD5

 

119

 

I/O

 

5VT

Default: PD5

Alternate: EXMC_NWE Remap: USART1_TX

VSS_10

120

 

 

Default: VSS_10

VDD_10

121

 

 

Default: VDD_10

 

PD6

 

122

 

I/O

 

5VT

Default: PD6

Alternate: EXMC_NWAIT Remap: USART1_RX

 

PD7

 

123

 

I/O

 

5VT

Default: PD7

Alternate: EXMC_NE0, EXMC_NCE1 Remap: USART1_CK

 

PG9

 

124

 

I/O

 

5VT

Default: PG9

Alternate: EXMC_NE1, EXMC_NCE2

 

PG10

 

125

 

I/O

 

5VT

Default: PG10

Alternate: EXMC_NCE3_0, EXMC_NE2

 

PG11

 

126

 

I/O

 

5VT

Default: PG11

Alternate: EXMC_NCE3_1

 

PG12

 

127

 

I/O

 

5VT

Default: PG12 Alternate: EXMC_NE3

 

PG13

 

128

 

I/O

 

5VT

Default: PG13

Alternate: EXMC_A24

 

PG14

 

129

 

I/O

 

5VT

Default: PG14

Alternate: EXMC_A25

VSS_11

130

P

 

Default: VSS_11

 

 

 

Pin Name

 

 

Pins

 

 

Pin Type(1)

 

 

I/O Level(2)

 

 

Functions description

VDD_11

131

P

 

Default: VDD_11

PG15

132

I/O

5VT

Default: PG15

 

 

PB3

 

 

133

 

 

I/O

 

 

5VT

Default: JTDO Alternate:SPI2_SCK, I2S2_CK

Remap: PB3, TRACESWO, TIMER1_CH1,

SPI0_SCK

 

PB4

 

134

 

I/O

 

5VT

Default: NJTRST Alternate: SPI2_MISO

Remap: TIMER2_CH0, PB4, SPI0_MISO

 

 

PB5

 

 

135

 

 

I/O

 

Default: PB5

Alternate: I2C0_SMBA, SPI2_MOSI, I2S2_SD, ETH_PPS_OUT

Remap: TIMER2_CH1, SPI0_MOSI, CAN1_RX

 

PB6

 

136

 

I/O

 

5VT

Default: PB6

Alternate: I2C0_SCL, TIMER3_CH0 Remap: USART0_TX, CAN1_TX

 

 

PB7

 

 

137

 

 

I/O

 

 

5VT

Default: PB7

Alternate: I2C0_SDA , TIMER3_CH1, EXMC_NADV

Remap: USART0_RX

BOOT0

138

I

 

Default: BOOT0

 

PB8

 

139

 

I/O

 

5VT

Default: PB8

Alternate: TIMER3_CH2, ETH_MII_TXD3 Remap: I2C0_SCL, CAN0_RX

 

PB9

 

140

 

I/O

 

5VT

Default: PB9

Alternate: TIMER3_CH3 Remap: I2C0_SDA, CAN0_TX

PE0

141

I/O

5VT

Default: PE0

Alternate: TIMER3_ETI, EXMC_NBL0

PE1

142

I/O

5VT

Default: PE1

Alternate: EXMC_NBL1

VSS_3

143

P

 

Default: VSS_3

VDD_3

144

P

 

Default: VDD_3

Notes:
(1)Type: I = input, O = output, P = power.
(2)I/O Level: 5VT = 5 V tolerant.

ARM® Cortex™-M3 core

The Cortex™-M3 processor is the latest generation of ARM® processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.
32-bit ARM® Cortex™-M3 processor core
Up to 108 MHz operation frequency
Single-cycle multiplication and hardware divider
Integrated Nested Vectored Interrupt Controller (NVIC)
24-bit SysTick timer

The Cortex™-M3 processor is based on the ARMv7 architecture and supports both Thumb and Thumb-2 instruction sets. Some system peripherals listed below are also provided by Cortex™-M3:
Internal Bus Matrix connected with ICode bus, DCode bus, system bus, Private Peripheral Bus (PPB) and debug accesses (AHB-AP)
Nested Vectored Interrupt Controller (NVIC)
Flash Patch and Breakpoint (FPB)
Data Watchpoint and Trace (DWT)
Instrument Trace Macrocell (ITM)
Memory Protection Unit (MPU)
Serial Wire JTAG Debug Port (SWJ-DP)
Trace Port Interface Unit (TPIU)


On-chip memory

Up to 1024 Kbytes of Flash memory
96 Kbytes of SRAM

The ARM® Cortex™-M3 processor is structured in Harvard architecture which can use separate buses to fetch instructions and load/store data. 1024 Kbytes of inner Flash at most and 96 Kbytes of inner SRAM is available for storing programs and data, both accessed (R/W) at CPU clock speed with zero wait states. The Table 2-3. GD32F107xx memory map shows the memory map of the GD32F107xx series of devices, including code, SRAM, peripheral, and other pre-defined regions.

Clock, reset and supply management

Internal 8 MHz factory-trimmed RC and external 3 to 25 MHz crystal oscillator
Internal 40 KHz RC calibrated oscillator and external 32.768 KHz crystal oscillator
Integrated system clock PLL
2.6 to 3.6 V application supply and I/Os
Supply Supervisor: POR (Power On Reset), PDR (Power Down Reset), and low voltage detector (LVD)
The Clock Control Unit (CCU) provides a range of oscillator and clock functions. These include speed internal RC oscillator and external crystal oscillator, high speed and low speed two types. Several prescalers allow the configuration of the AHB frequency, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB and the high-speed APB domains is 108 MHz. The maximum allowed frequency of the low- speed APB domain is 54 MHz. See Figure 2-5. GD32F107xx clock tree for details on the clock tree.
The Reset Control Unit (RCU) controls three kinds of reset: system reset resets the processor core and peripheral IP components. Power-on reset (POR) and power-down reset (PDR) are always active, and ensures proper operation starting from/down to 2.6 V. The device remains in reset mode when VDD is below a specified threshold. The embedded low voltage detector (LVD) monitors the power supply, compares it to the voltage threshold and generates an interrupt as a warning message for leading the MCU into security.
Power supply schemes:
VDD range: 2.6 to 3.6 V, external power supply for I/Os and the internal regulator. Provided externally through VDD pins.
VSSA, VDDA range: 2.6 to 3.6 V, external analog power supplies for ADC, reset blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.
VBAT range: 1.8 to 3.6 V, power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present.

Boot modes

At startup, boot pins are used to select one of three boot options:
Boot from main flash memory (default)
Boot from system memory
Boot from on-chip SRAM

The boot loader is located in the internal boot ROM memory (system memory). It is used to reprogram the Flash memory by using USART0 (PA9 and PA10), USART1 (PD5 and PD6), USBFS in device mode (PA9, PA11 and PA12). It also can be used to transfer and update the Flash memory code, the data and the vector table sections. In default condition, boot from bank 0 of Flash memory is selected. It also supports to boot from bank 1 of Flash memory by

setting a bit in option bytes.


Power saving modes

The MCU supports three kinds of power saving modes to achieve even lower power consumption. They are sleep mode, deep-sleep mode, and standby mode. These operating modes reduce the power consumption and allow the application to achieve the best balance between the CPU operating time, speed and power consumption.
Sleep mode
In sleep mode, only the clock of CPU core is off. All peripherals continue to operate and any interrupt/event can wake up the system.
Deep-sleep mode
In deep-sleep mode, all clocks in the 1.2V domain are off, and all of the high speed crystal oscillator (IRC8M, HXTAL) and PLL are disabled. Only the contents of SRAM and registers are retained. Any interrupt or wakeup event from EXTI lines can wake up the system from the deep-sleep mode including the 16 external lines, the RTC alarm, the LVD output, and USB wakeup. When exiting the Deep-sleep mode, the IRC8M is selected as the system clock.
Standby mode
In standby mode, the whole 1.2V domain is power off, the LDO is shut down, and all of IRC8M, HXTAL and PLL are disabled. The contents of SRAM and registers (except Backup registers) are lost. There are four wakeup sources for the standby mode, including the external reset from NRST pin, the RTC alarm, the FWDGT reset, and the rising edge on WKUP pin.

Analog to digital converter (ADC)

12-bit SAR ADC engine
Up to 1 MSPS conversion rate
Conversion range: VSSA to VDDA (2.6 to 3.6 V)
Temperature sensor

Up to two 12-bit 1 μs multi-channel ADCs are integrated in the device. Each is a total of up to 21 multiplexed external channels. An analog watchdog block can be used to detect the channels, which are required to remain within a specific threshold window. A configurable channel management block of analog inputs also can be used to perform conversions in single, continuous, scan or discontinuous mode to support more advanced usages.
The ADCs can be triggered from the events generated by the general-purpose timers (TIMERx) and the advanced-control timers (TIMER0 and TIMER7) with internal connection. The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 2.6 V < VDDA < 3.6 V. The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage

into a digital value.


Digital to analog converter (DAC)

Two 12-bit DAC converters of independent output channel
8-bit or 12-bit mode in conjunction with the DMA controller

The two 12-bit buffered DAC channels are used to generate variable analog outputs. The DACs are designed with integrated resistor strings structure. The DAC channels can be triggered by the timer update outputs or EXTI with DMA support. In dual DAC channel operation, conversions could be done independently or simultaneously. The maximum output value of the DAC is VREF+.

DMA

7 channel DMA0 controller and 5 channel DMA1 controller
Peripherals supported: Timers, ADC, SPIs, I2Cs, USARTs, DAC, I2S
Dedicated DMA controller with the Ethernet application

The flexible general-purpose DMA controllers provide a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other system functions. Four types of access method are supported: peripheral to peripheral, peripheral to memory, memory to peripheral, memory to memory
Each channel is connected to fixed hardware DMA requests. The priorities of DMA channel requests are determined by software configuration and hardware channel number. Transfer size of source and destination are independent and configurable.

General-purpose inputs/outputs (GPIOs)

Up to 112 fast GPIOs, all mappable on 16 external interrupt vectors (EXTI)
Analog input/output configurable
Alternate function input/output configurable

There are up to 112 general purpose I/O pins (GPIO) in GD32F107xx, named PA0 ~ PA15 and  PB0  ~ PB15,  PC0  ~  PC15,  PD0  ~ PD15,  PE0  ~  PE15,  PF0-PF15,  PG0-PG15 to
implement logic input/output functions. Each of the GPIO ports has related control and configuration registers to satisfy the requirements of specific applications. The external interrupts on the GPIO pins of the device have related control and configuration registers in the External Interrupt Control Unit (EXTI). The GPIO ports are pin-shared with other alternative functions (AFs) to obtain maximum flexibility on the package pins. Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are

shared with digital or analog alternate functions. All GPIOs are high-current capable except for analog inputs.

Timers and PWM generation

Up to two 16-bit advanced-control timer (TIMER0 & TIMER7), four 16-bit general-purpose timers (GPTM), and two 16-bit basic timer (TIMER5 & TIMER6)
Up to 4 independent channels of PWM, output compare or input capture for each GPTM and external trigger input
16-bit, motor control PWM advanced-control timer with programmable dead-time generation for output match
Encoder interface controller with two inputs using quadrature decoder
24-bit SysTick timer down counter
2 watchdog timers (Free watchdog timer and window watchdog timer)

The advanced-control timer (TIMER0 & TIMER7) can be seen as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable dead- time generation. It can also be used as a complete general-purpose timer. The 4 independent channels can be used for
Input capture
Output compare
PWM generation (edge- or center-aligned counting modes)
Single pulse mode output

If configured as a general-purpose 16-bit timer, it has the same functions as the TIMER x timer. It can be synchronized with external signals or to interconnect with other GPTMs together which have the same architecture and features.
The general-purpose timer (GPTM), known as TIMER1 ~ TIMER4 can be used for a variety of purposes including general time, input signal pulse width measurement or output waveform generation such as a single pulse generation or PWM output, up to 4 independent channels for input capture/output compare. The GPTM also supports an encoder interface with two inputs using quadrature decoder.
The basic timer, known as TIMER5 and TIMER6 are mainly used for DAC trigger generation. They can also be used as a simple 16-bit time base.
The GD32F107xx have two watchdog peripherals, free watchdog timer and window watchdog timer. They offer a combination of high safety level, flexibility of use and timing accuracy.
The free watchdog timer includes a 12-bit down-counting counter and an 8-bit prescaler, It is clocked from an independent 40 kHz internal RC and as it operates independently of the main clock, it can operate in deep-sleep and standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management.

The window watchdog timer is based on a 7-bit down counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.
The SysTick timer is dedicated for OS, but could also be used as a standard down counter. It features:
A 24-bit down counter
Auto reload capability
Maskable system interrupt generation when the counter reaches 0
Programmable clock source


Real time clock (RTC)

32-bit up-counter with a programmable 20-bit prescaler
Alarm function
Interrupt and wake-up event

The real time clock is an independent timer which provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and an expected interrupt. The RTC features a 32-bit programmable counter for long-term measurement using the compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz from external crystal oscillator.

Inter-integrated circuit (I2C)

Up to two I2C bus interfaces can support both master and slave mode with a frequency up to 400 kHz
Provide arbitration function, optional PEC (packet error checking) generation and checking
Supports 7-bit and 10-bit addressing mode and general call addressing mode

The I2C interface is an internal circuit allowing communication with an external I2C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line (SDA) and a serial clock line (SCL). The I2C module provides transfer rate of up to 100 KHz in standard mode and up to 400 KHz in fast mode. The I2C module also has an arbitration detect function to prevent the situation where more than one master attempts to transmit data to the I2C bus at the same time. A CRC-8 calculator is also provided in I2C interface to perform packet error checking for I2C data.

Serial peripheral interface (SPI)

Up to three SPI interfaces with a frequency of up to 18 MHz
Support both master and slave mode
Hardware CRC calculation and transmit automatic CRC error checking

The SPI interface uses 4 pins, among which are the serial data input and output lines (MISO & MOSI), the clock line (SCK) and the slave select line (NSS). Both SPIs can be served by the DMA controller. The SPI interface may be used for a variety of purposes, including simplex synchronous transfers on two lines with a possible bidirectional data line or reliable communication using CRC checking.

Universal synchronous asynchronous receiver transmitter (USART)
Up to three USARTs and two UARTs with operating frequency up to 6.75 MHz
Supports both asynchronous and clocked synchronous serial communication modes
IrDA SIR encoder and decoder support
LIN break generation and detection
USARTs support ISO 7816-3 compliant smart card interface

The USART (USART0, USART1 and USART2) are used to translate data between parallel and serial interfaces, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. It is also commonly used for RS-232 standard communication. The USART includes a programmable baud rate generator which is capable of dividing the system clock to produce a dedicated clock for the USART transmitter and receiver. The USART also supports DMA function for high speed data communication except UART4.

Inter-IC sound (I2S)

Two I2S bus Interfaces with sampling frequency from 8 kHz to 192 kHz
Support either master or slave mode

The Inter-IC sound (I2S) bus provides a standard communication interface for digital audio applications by 3-wire serial lines. GD32F107xx contain two I2S-bus interfaces that can be operated with 16/32 bit resolution in master or slave mode, pin multiplexed with SPI1 and SPI2. The audio sampling frequency from 8 kHz to 192 kHz is supported with less than 0.5% accuracy error.

Universal serial bus full-speed (USBFS)

One USB device/host/OTG full-speed Interface with frequency up to 12 Mbit/s
Internal main PLL for USB CLK compliantly

The Universal Serial Bus (USB) is a 4-wire bus with 4 bidirectional endpoints. The device controller enables 12 Mbit/s data exchange with integrated transceivers in device/host/OTG mode. Full-speed peripheral is compliant with the USB 2.0 specification. Transaction formatting is performed by the hardware, including CRC generation and checking. The status of a completed USB transfer or error condition is indicated by status registers. An interrupt is also generated if enabled. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HXTAL crystal oscillator) and the operating frequency divided from APB1 should be 12 MHz above.

Controller area network (CAN)

Two CAN2.0B interface with communication frequency up to 1 Mbit/s
Internal main PLL for USB CLK compliantly

Controller area network (CAN) is a method for enabling serial communication in field bus. The CAN protocol has been used extensively in industrial automation and automotive applications. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three mailboxes for transmission and two FIFOs of three message deep for reception. It also provides 14 scalable/configurable identifier filter banks for selecting the incoming messages needed and discarding the others.

Ethernet MAC interface

IEEE 802.3 compliant media access controller (MAC) for Ethernet LAN
10/100 Mbit/s rates with dedicated DMA controller and SRAM
Support hardware precision time protocol (PTP) with conformity to IEEE 1588

The Ethernet media access controller (MAC) conforms to IEEE 802.3 specifications and fully supports IEEE 1588 standards. The embedded MAC provides the interface to the required external network physical interface (PHY) for LAN bus connection via an internal media independent interface (MII) or a reduced media independent interface (RMII). The number of MII signals provided up to 17 with 25 MHz output and RMII up to 9 with 50 MHz output. The function of 32-bit CRC checking is also available.

External memory controller (EXMC)

Supported external memory: SRAM, PSRAM, ROM and NOR-Flash, NAND Flash and

CF card
Up to 16-bit data bus
Support to interface with Motorola 6800 and Intel 8080 type LCD directly

External memory controller (EXMC) is an abbreviation of external memory controller. It is divided in to several sub-banks for external device support, each sub-bank has its own chip selection signal but at one time, only one bank can be accessed. The EXMC support code execution from external memory except NAND Flash and CF card. The EXMC also can be configured to interface with the most common LCD module of Motorola 6800 and Intel 8080 series and reduce the system cost and complexity.

Debug mode

Serial wire JTAG debug port (SWJ-DP)

The ARM® SWJ-DP Interface is embedded and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

Package and operation temperature

LQFP144 (GD32F107Zx), LQFP100 (GD32F107Vx), LQFP64 (GD32F107Rx)
Operation temperature range: -40°C to +85°C (industrial level)

扫二维码用手机看

飞睿无线定位测距uwb标签UWB芯片厂商UWB定位公司实现无缝定位的领跑者

在当今数字化世界中,定位技术的重要性越来越被广泛认知和应用。从室内导航到物流跟踪,无线测距UWB芯片的出现为各行各业带来了新的可能性。而在这个充满竞争的领域中,一家名为飞睿UWB定位公司的无线定位测距uwb标签UWB芯片厂商,凭借其先进的技术和创新能力,成功成为实现无缝定位的先进者。 UWB(Ultra-Wideband)是一种广泛应用于室内定位和跟踪的无线通信技术。相比传统的定位技术,如GPS或Wi-Fi,UWB具有更高的精度和定位准确性。这一技术利用短脉冲信号的传播时间来计算物体与基站之间的距离,从而实现高精度的定位。 飞睿UWB定位公司作为一家专注于UWB技术研发和应用的企业,不仅在无线定位测距uwb标签UWB芯片领域拥有深厚的技术实力,而且在产品研发和市场推广方面也积累了丰富的经验。该公司的核心业务包括UWB芯片的设计、制造、销售和技术支持,并提供完整的解决方案来满足不同行业的需求。 一、UWB芯片的优势和应用 UWB芯片作为实现准确定位和跟踪的关键技术,具有许多优势和广泛应用的潜力。首先,UWB芯片具有高精度的定位能力,可以达到亚厘米级的精度,尤其适用于对位置精度要求高的应用场景。其次,UWB技术在室内环境中的表现出色,能够克服传统技术在室内多路径干扰和信号衰减方面的限制。此外,UWB芯片还能够实现低功耗和高数据传输速率,适用于物流追踪、室内导航、智能家居等领域。 二、飞睿UWB定位公司的研发实力和技术创新 飞睿UWB定位公司以其突出的研发实力和技术创新能力在行业内独树一帜。该公司拥有一支由工程师和科研人员组成的专业团队,致力于UWB芯片的研发和创新应用。不仅在硬件设计方面有着丰富的经验,还在信号处理算法和定位算法等核心技术上有着深入研究。通过持续的技术创新和研发投入,UWB定位公司不断地提升产品性能,满足市场需求。 三、UWB定位公司的产品与解决方案 飞睿作为一家专业的无线定位测距uwb标签UWB芯片厂商,UWB定位公司提供了多款优秀的产品与解决方案。首先,飞睿的UWB芯片具有高性能和可靠性,能够满足各行业对定位精度和稳定性的要求。其次,UWB定位公司还提供完善的软件开发工具和技术支持,帮助客户快速集成和开发应用。此外,UWB定位公司还定制化的解决方案,根据客户的具体需求提供全面的技术支持和服务,确保系统的稳定运行和良好的用户体验。 四、UWB定位公司的应用案例 UWB定位公司的产品和解决方案已经成功应用于多个行业,并取得了显著的成果。以下是一些应用案例的介绍: 1. 物流和仓储管理:UWB定位技术可以实时追踪货物的位置和运动轨迹,提高物流效率和准确性。通过在仓库内部安装UWB基站,可以实现对货物的高精度定位,减少货物丢失和误配的情况,提升仓储管理的效率。 2. 室内导航和定位服务:UWB芯片可以用于室内导航和定位服务,帮助人们快速找到目的地并提供导航指引。在商场、机场、医院等场所安装UWB基站,可以提供准确的导航服务,为用户提供更好的体验。 3. 车联网和自动驾驶:UWB技术在车联网和自动驾驶领域也有广泛应用。通过在车辆中安装UWB传感器和芯片,可以实现车辆之间的精准通信和定位,提升驾驶安全性和车辆自主性。 4. 工业制造和机器人:在工业制造和机器人领域,UWB技术可以用于定位和跟踪移动设备和机器人的位置,提高生产效率和自动化水平。通过与其他传感器和系统的结合,可以实现更智能化的制造和操作。 五、未来发展和挑战 飞睿作为无线定位测距uwb标签UWB芯片厂商和定位技术提供商,UWB定位公司面临着许多机遇和挑战。随着物联网和人工智能的快速发展,对于精准定位和跟踪的需求将越来越大。UWB技术在室内定位、智能交通、工业制造等领域有着广阔的应用前景。然而,市场竞争激烈,技术要求不断提高,对于UWB定位公司来说,需要不断加强技术研发和创新能力,提供更优秀的产品和解决方案,赢得客户的信任和市场份额。 六、技术合作与生态建设 飞睿UWB定位公司在推动技术合作与生态建设方面也取得了显著成绩。他们积极与其他行业的厂商和合作伙伴进行技术交流和合作,共同推动UWB技术的发展和应用。通过与硬件设备生产商、软件开发公司以及系统集成商等的合作,UWB定位公司不仅拓展了产品的应用领域,还实现了技术的互补和资源的共享,加快了技术创新的速度和效果。 七、用户体验与满意度 作为先进的UWB芯片厂商和定位技术提供商,飞睿UWB定位公司一直将用户体验和满意度放在优先位置。他们注重产品的易用性和稳定性,在产品设计和功能开发上持续优化,以提供更好的用户体验。同时,UWB定位公司还建立了完善的售后服务体系,及时响应客户的需求和问题,并提供技术支持和解决方案,确保用户能够充分发挥UWB技术的价值和效果,获得满意的使用体验。 八、安全与隐私保护 在定位技术应用的同时,飞睿UWB定位公司也重视用户的安全和隐私保护。他们在产品设计和开发中注入了安全机制,采用加密和身份验证等技术手段,确保用户的数据和隐私得到有效保护。同时,UWB定位公司严格遵守相关法规和行业标准,保证数据的合法和合规使用,为用户提供可信赖的定位解决方案。 九、社会责任与可持续发展 作为一家具有社会责任感的企业,飞睿uwb标签UWB定位公司积极关注可持续发展和环境保护。他们在生产过程中注重资源的合理利用和能源的节约,致力于减少对环境的影响。同时,UWB定位公司也积极参与社会公益活动,回馈社会,为推动可持续发展和社会进步做出贡献。 总结: 飞睿UWB定位公司作为一家先进的无线定位测距uwb标签UWB芯片厂商和解决方案提供商,通过先进的技术研发和创新能力,成功实现了无缝定位的先进地位。他们的产品和解决方案在物流管理、室内导航、车联网、工业制造等领域展现出了巨大的应用潜力和市场前景。同时,UWB定位公司注重用户体验和满意度,积极推动技术合作与生态建设,关注安全与隐私保护,承担社会责任,致力于可持续发展。相信在不久的将来,UWB定位公司将以其先进的技术和卓越的服务,继续引领无线测距UWB芯片领域的发展,为行业和用户带来更多的创新和价值。
点击查看更多
18
2022-02

uA级别智能门锁低功耗雷达模块让门锁更加智能省电节约功耗

发布时间: : 2022-02--18
uA级别智能门锁低功耗雷达模块让门锁更加智能省电节约功耗,指纹门锁并不是什么新鲜事,我相信每个人都很熟悉。随着近年来智能家居的逐步普及,指纹门锁也进入了成千上万的家庭。今天的功耗雷达模块指纹门锁不仅消除了繁琐的钥匙,而且还提供了各种智能功能,uA级别智能门锁低功耗雷达模块用在智能门锁上,可以实现门锁的智能感应屏幕,使电池寿命延长3-5倍,如与其他智能家居连接,成为智能场景的开关。所以今天的指纹门锁更被称为智能门锁。 今天,让我们来谈谈功耗雷达模块智能门锁的安全性。希望能让更多想知道智能门锁的朋友认识下。 指纹识别是智能门锁的核心 指纹识别技术在我们的智能手机上随处可见。从以前的实体指纹识别到屏幕下的指纹识别,可以说指纹识别技术已经相当成熟。指纹识别可以说是整个uA级低功耗雷达模块智能门锁的核心。 目前主要有三种常见的指纹识别方法,即光学指纹识别、半导体指纹识别和超声指纹识别。 光学指纹识别 让我们先谈谈光学指纹识别的原理实际上是光的反射。我们都知道指纹本身是不均匀的。当光照射到我们的指纹上时,它会反射,光接收器可以通过接收反射的光来绘制我们的指纹。就像激光雷达测绘一样。 光学指纹识别通常出现在打卡机上,手机上的屏幕指纹识别技术也使用光学指纹识别。今天的光学指纹识别已经达到了非常快的识别速度。 然而,光学指纹识别有一个缺点,即硬件上的活体识别无法实现,容易被指模破解。通常,活体识别是通过软件算法进行的。如果算法处理不当,很容易翻车。 此外,光学指纹识别也容易受到液体的影响,湿手解锁的成功率也会下降。 超声指纹识别 超声指纹识别也被称为射频指纹识别,其原理与光学类型相似,但超声波使用声波反射,实际上是声纳的缩小版本。因为使用声波,不要担心水折射会降低识别率,所以超声指纹识别可以湿手解锁。然而,超声指纹识别在防破解方面与光学类型一样,不能实现硬件,可以被指模破解,活体识别仍然依赖于算法。 半导体指纹识别 半导体指纹识别主要采用电容、电场(即我们所说的电感)、温度和压力原理来实现指纹图像的收集。当用户将手指放在前面时,皮肤形成电容阵列的极板,电容阵列的背面是绝缘极板。由于不同区域指纹的脊柱与谷物之间的距离也不同,因此每个单元的电容量随之变化,从而获得指纹图像。半导体指纹识别具有价格低、体积小、识别率高的优点,因此大多数uA级低功耗雷达模块智能门锁都采用了这种方案。半导体指纹识别的另一个功能是活体识别。传统的硅胶指模无法破解。 当然,这并不意味着半导体可以百分识别活体。所谓的半导体指纹识别活体检测不使用指纹活体体征。本质上,它取决于皮肤的材料特性,这意味着虽然传统的硅胶指模无法破解。 一般来说,无论哪种指纹识别,都有可能被破解,只是说破解的水平。然而,今天的指纹识别,无论是硬件生活识别还是算法生活识别,都相对成熟,很难破解。毕竟,都可以通过支付级别的认证,大大保证安全。 目前,市场上大多数智能门锁仍将保留钥匙孔。除了指纹解锁外,用户还可以用传统钥匙开门。留下钥匙孔的主要目的是在指纹识别故障或智能门锁耗尽时仍有开门的方法。但由于有钥匙孔,它表明它可以通过技术手段解锁。 目前市场上的锁等级可分为A、B、C三个等级,这三个等级主要是通过防暴开锁和防技术开锁的程度来区分的。A级锁要求技术解锁时间不少于1分钟,B级锁要求不少于5分钟。即使是高级别的C级锁也只要求技术解锁时间不少于10分钟。 也就是说,现在市场上大多数门锁,无论是什么级别,在专业的解锁大师面前都糊,只不过是时间长短。 安全是重要的,是否安全增加了人们对uA级别低功耗雷达模块智能门锁安全的担忧。事实上,现在到处都是摄像头,强大的人脸识别,以及移动支付的出现,使家庭现金减少,所有这些都使得入室盗窃的成本急剧上升,近年来各省市的入室盗窃几乎呈悬崖状下降。 换句话说,无论锁有多安全,无论锁有多难打开,都可能比在门口安装摄像头更具威慑力。 因此,担心uA级别低功耗雷达模块智能门锁是否不安全可能意义不大。毕竟,家里的防盗锁可能不安全。我们应该更加关注门锁能给我们带来多少便利。 我们要考虑的是智能门锁的兼容性和通用性。毕竟,智能门锁近年来才流行起来。大多数人在后期将普通机械门锁升级为智能门锁。因此,智能门锁能否与原门兼容是非常重要的。如果不兼容,发现无法安装是一件非常麻烦的事情。 uA级别低功耗雷达模块智能门锁主要是为了避免带钥匙的麻烦。因此,智能门锁的便利性尤为重要。便利性主要体现在指纹的识别率上。手指受伤导致指纹磨损或老年人指纹较浅。智能门锁能否识别是非常重要的。 当然,如果指纹真的失效,是否有其他解锁方案,如密码解锁或NFC解锁。还需要注意密码解锁是否有虚假密码等防窥镜措施。 当然,智能门锁的耐久性也是一个需要特别注意的地方。uA级别低功耗雷达模块智能门锁主要依靠内部电池供电,这就要求智能门锁的耐久性尽可能好,否则经常充电或更换电池会非常麻烦。 智能门锁低功耗雷达模块:让门锁更加智能省电节约功耗 在当今信息化时代,智能门锁已经成为人们生活中不可或缺的一部分。对于门锁制造商来说,如何提高门锁的安全性、实用性和便利性,成为他们面对的重要课题。随着人们对门锁智能化的需求越来越高,门锁的能耗问题也成为了门锁制造商需要重视的问题。为此,越来越多的门锁制造商开始推出以低功耗为主题的系列产品。在这样的背景下,智能门锁低功耗雷达模块应运而生。 智能门锁低功耗雷达模块是一种新型技术,其采取雷达技术对门锁周围的物体进行探测,一旦发现门锁附近有人靠近,便会将门锁自动解锁,无需使用钥匙。同时,在保持智能控制的前提下,实现了门锁省电、节约功耗,延长门锁使用寿命。 在使用智能门锁低功耗雷达模块的门锁中,控制电路和自动解锁机制是关键的部件。控制电路采用先进的芯片技术,通过优秀的功耗控制以实现模块化管理。而自动解锁机制不仅可以通过微波信号控制实现门锁的无钥匙解锁,还能够在门锁未处理的情况下自动锁定,保障门锁的安全。 智能门锁低功耗雷达模块的主要特点是:低功耗、高灵敏度和高可靠性。该模块在进行人体检测时,可以远距离探测到距离为5-7米远处的人体信号,目标检测速度极快,而且对门锁周围的环境要求不高。同时,该模块采用了自适应自动补偿技术,能够根据不同环境的变化自动调整信号发射和接收参数,减小误检率。 在使用智能门锁低功耗雷达模块的门锁中,其功耗可以做到非常低,一组电池能够支持门锁持续使用几年左右。而且这样的智能门锁除了具有自动解锁的功能,还可与APP相互匹配,实现了远程操作的便捷性。 总的来说,智能门锁低功耗雷达模块的问世,解决了门锁安全性和省电节省方面的问题,是智能门锁材料不可或缺的一部分。作为门锁制造商,只有不断创新,利用这种新型技术,将会在行业中占据重要的地位。 除了上文所述的主要特点和优势,智能门锁低功耗雷达模块还具有以下几点: 1. 实时监测门锁周围环境变化,通过物体的距离体积和运动来确定是否有人靠近门锁,并控制门锁的开启或关闭,使得门锁更加智能化。 2. 可对门锁附件进行检测,如门挂、门应急照明灯以及紧急呼叫按钮等,并及时给出响应,确保门锁能够正常运作。这样,门锁在不受干扰的情况下,能够 保持安全通道。 3. 通过智能学习技术,能够自适应网站多种环境的变化,让智能门锁低功耗雷达模块更加准确和精细的控制门锁的开关,节约能耗并延长使用寿命。 4. 能够与其他智能电器相连,如智能家居系统、电视等,形成智能家居生态圈,更好地控制家庭访客进出,让生活更加方便。 综上所述,智能门锁低功耗雷达模块的出现,对提升门锁能耗管理和智能化有着重要作用。门锁制造商只有将这些新型技术运用到门锁产品中,才能更加贴合用户需求,满足消费市场的日益增长的智能化需求。
查看详情 查看详情
14
2022-01

微波雷达传感器雷达感应浴室镜上的应用

发布时间: : 2022-01--14
微波雷达传感器雷达感应浴室镜上的应用,如今,家用电器的智能化已成为一种常态,越来越多的人开始在自己的浴室里安装智能浴室镜。但是还有很多人对智能浴镜的理解还不够深入,今天就来说说这个话题。 什么是智能浴室镜?智慧型浴室镜,顾名思义,就是卫浴镜子智能化升级,入门级产品基本具备了彩灯和镜面触摸功能,更高档次的产品安装有微波雷达传感器智能感应,当感应到有人接近到一定距离即可开启亮灯或者亮屏操作,也可三色无极调,智能除雾,语音交互,日程安排备忘,甚至在镜子上看电视,听音乐,气象预报,问题查询,智能控制,健康管理等。 智能化雷达感应浴室镜与普通镜的区别,为什么要选TA?,就功能而言,普通浴镜价格用它没有什么压力!而且雷达感应智能浴镜会让人犹豫不决是否“值得一看”。就功能和应用而言,普通浴镜功能单一,而微波雷达传感器智能浴室镜功能创新:镜子灯光色温和亮度可以自由调节,镜面还可以湿手触控,智能除雾,既环保又健康! 尽管智能浴镜比较新颖,但功能丰富,体验感更好,特别是入门级的智能浴镜,具有基础智能化功能,真的适合想体验下智能化的小伙伴们。 给卫生间安装微波雷达传感器浴室镜安装注意什么? ①确定智能浴室镜的安装位置,因为是安装时在墙壁上打孔,一旦安装后一般无法移动位置。 ②在选购雷达感应智能浴室镜时,根据安装位置确定镜子的形状和尺寸。 ③确定智能浴镜的安装位置后,在布线时为镜子预留好电源线。 ④确定微波雷达传感器智能浴镜的安装高度,一般智能浴镜的标准安装高度约85cm(从地砖到镜子底),具体安装高度要根据家庭成员的身高及使用习惯来决定。 ⑤镜面遇到污渍,可用酒精或30%清洁稀释液擦洗,平时可用干毛巾养护,注意多通风。
查看详情 查看详情
16
2024-04

雷达模块控制LED人体感应开关价格分析与应用

发布时间: : 2024-04--16
随着人们对生活质量要求的提高,智能家居逐渐成为了现代家居生活的新宠。其中,雷达模块控制LED人体感应开关作为一种智能照明解决方案,以其高效节能、便捷智能的特点,受到了广大消费者的青睐。这种开关不仅可以根据人体的活动情况自动调节照明,而且能够在一定程度上避免误判和误触发,从而为用户提供更加舒适和节能的照明体验。本文将详细探讨雷达模块控制LED人体感应开关的工作原理、应用领域,以及影响其价格的各种因素。 二、雷达模块控制LED人体感应开关的工作原理 雷达模块是雷达模块控制LED人体感应开关的核心部件,它通过发射和接收射频信号来检测环境中的人体活动。当雷达模块发射的射频信号遇到人体时,会反射回来被雷达模块接收。通过分析反射信号的强度和变化,雷达模块可以判断人体的存在和移动情况。当雷达模块检测到人体活动时,会向LED人体感应开关发送信号,开关随即控制LED灯具的开启或关闭。 雷达模块控制LED人体感应开关的工作原理使得它能够实现对人体活动的智能感知和快速响应。与传统的红外线感应开关相比,雷达模块具有更高的灵敏度和更远的检测距离,可以在更广泛的场景下实现准确的人体检测。此外,雷达模块还可以避免被其他物体遮挡或干扰,从而确保开关的稳定性和可靠性。 三、雷达模块控制LED人体感应开关的应用领域 雷达模块控制LED人体感应开关的应用领域非常广泛,主要包括以下几个方面: 家庭照明:在家庭照明中,雷达模块控制LED人体感应开关可以根据人体的活动情况自动调节照明,为用户提供更加舒适和节能的照明体验。例如,在客厅中,当有人进入时,开关可以自动开启灯具,当人离开时,则自动关闭灯具。这样可以有效避免忘记关灯造成的能源浪费。 商业空间:在商业空间中,雷达模块控制LED人体感应开关可以营造舒适的购物和工作环境,同时降低电能消耗。在商场中,当顾客走进某个区域时,开关可以自动开启该区域的照明,当顾客离开时,则自动关闭照明。这样可以为顾客提供更加舒适的购物环境,同时降低商场的能源成本。 公共设施:在公共设施中,雷达模块控制LED人体感应开关可以提高照明系统的智能化水平,方便用户的同时节约能源。在走廊、楼梯间等场所,当有人经过时,开关可以自动开启照明,当人离开后,则自动关闭照明。这样可以为用户提供更加安全和便捷的照明服务,同时降低公共设施的能源消耗。 四、雷达模块控制LED人体感应开关价格影响因素分析 雷达模块控制LED人体感应开关的价格受到多种因素的影响,主要包括以下几个方面: 技术水平:雷达模块和LED灯具的技术水平是影响产品价格的重要因素。技术水平越高,产品的性能越稳定、功能越丰富,价格也会相应提高。例如,高精度的雷达模块和高效节能的LED灯具通常价格较高。 品牌效应:知名品牌通常拥有更高的市场认可度和更严格的品质控制,因此产品价格也相对较高。消费者在购买时往往更倾向于选择知名品牌的产品,因为这些产品通常具有更好的品质和更完善的售后服务。 市场供求:市场供求关系是决定产品价格的重要因素。当市场上需求大于供应时,产品价格往往会上涨;而当供应大于需求时,产品价格则可能下降。因此,雷达模块控制LED人体感应开关的价格也会受到市场供求关系的影响。 生产成本:生产成本是决定产品价格的关键因素之一。包括原材料成本、人工成本、研发成本等在内的生产成本越高,产品的价格也会相应提高。因此,生产企业在控制成本的同时,也需要不断提高产品的技术水平和品质,以满足消费者的需求。 五、结论 综上所述,雷达模块控制LED人体感应开关作为一种先进的智能照明解决方案,在家庭照明、商业空间和公共设施等领域具有广泛的应用前景。其价格受到技术水平、品牌效应、市场供求和生产成本等多种因素的影响。消费者在选择产品时,应根据自身需求和预算,综合考虑产品的性能、品质和价格等因素,以做出合适的选择。同时,生产企业也应不断提高产品的技术水平和品质,以满足消费者的需求,推动智能照明行业的发展。
查看详情 查看详情
16
2024-04

微波雷达模块照明人体感应防盗器:智能家居安全新选择

发布时间: : 2024-04--16
在智能家居日益普及的今天,家庭和商业场所的安全问题愈发受到人们的关注。传统的防盗器在智能化、精准度和节能方面已无法满足现代人的需求。因此,微波雷达模块照明人体感应防盗器作为一种创新的智能家居安全产品,应运而生,为现代家庭和商业场所提供了更加高效、智能的安全保障。 二、微波雷达模块技术解析 微波雷达模块是一种基于微波探测原理的无线探测技术。它利用微波信号对周围环境进行扫描,通过检测反射回来的微波信号来获取物体的距离、速度和方向等信息。微波雷达模块具有探测距离远、抗干扰能力强、功耗低等特点,因此在智能家居领域得到了广泛应用。 在照明领域,微波雷达模块可以通过对人体运动的精准感应,实现智能照明控制。当有人进入房间时,微波雷达模块能够迅速感应到人体的存在,并自动开启照明设备,提供合适的光线亮度;当人员离开时,照明设备则会自动关闭,从而达到节能环保的效果。 在防盗领域,微波雷达模块的高灵敏度和精准识别能力使其成为防盗器的理想选择。微波雷达模块可以实时监测监控区域内的动态变化,一旦发现有人员入侵,便会立即发出报警信号,提醒用户及时采取应对措施。 三、人体感应技术介绍 人体感应技术是一种基于人体红外辐射的感应技术。它利用红外传感器检测周围环境中的人体红外辐射信号,通过信号处理和分析来判断是否有人员存在。人体感应技术具有灵敏度高、抗干扰能力强等特点,因此在智能家居安全领域得到了广泛应用。 在防盗器领域,人体感应技术可以用于实现入侵检测功能。当有人员进入监控区域时,人体感应技术能够迅速感应到人体的红外辐射信号,并触发防盗器发出报警信号。这种防盗方式不需要物理接触,因此具有更高的隐蔽性和可靠性。 四、微波雷达模块照明人体感应防盗器的特点 微波雷达模块照明人体感应防盗器结合了微波雷达模块和人体感应技术的优势,具有以下特点: 智能感应:微波雷达模块和人体感应技术相结合,能够智能感知人体的存在和运动状态,实现精准控制。 节能环保:通过智能照明控制,能够根据实际需要自动调节照明设备的亮度和开关状态,有效节约能源。 高灵敏度:微波雷达模块和人体感应技术都具有高灵敏度,能够准确识别监控区域内的微小动态变化。 精准识别:通过先进的信号处理算法,微波雷达模块和人体感应技术能够准确区分人体和其他物体的运动状态,避免误报和漏报。 易于安装:微波雷达模块照明人体感应防盗器采用无线连接方式,安装简便快捷,不需要复杂的布线工作。 操作简便:用户可以通过手机APP或智能语音助手等方式对防盗器进行远程控制和设置,操作简便方便。 美观实用:微波雷达模块照明人体感应防盗器采用简约时尚的设计风格,不仅具有实用功能,还能为家居环境增添美感。 五、产品应用场景 微波雷达模块照明人体感应防盗器适用于多种场景,如家庭住宅、商业店铺和公共区域等。 在家庭住宅中,微波雷达模块照明人体感应防盗器可以用于客厅、卧室和厨房等区域的照明和防盗监控。当家庭成员进入房间时,照明设备会自动亮起;当有人员入侵时,防盗器会发出报警信号提醒用户。 在商业店铺中,微波雷达模块照明人体感应防盗器可以用于展示柜、货架和入口等区域的照明和防盗监控。这不仅可以提升店铺的整体形象和客户体验,还能有效预防和减少盗窃事件的发生。 在公共区域中,微波雷达模块照明人体感应防盗器可以用于公园、广场和停车场等区域的夜间照明和安全监控。通过智能感应和控制,可以实现节能环保和公共安全的双重目标。 六、市场前景分析 随着智能家居市场的快速发展和人们对安全需求的不断提高,微波雷达模块照明人体感应防盗器具有广阔的市场前景。 首先,智能家居安全市场需求不断增长。随着人们生活水平的提高和居住环境的改善,对家庭和商业场所的安全防护要求也越来越高。微波雷达模块照明人体感应防盗器作为一种创新的智能家居安全产品,能够满足现代人对安全、便捷和舒适的需求。 其次,技术创新推动市场发展。微波雷达模块和人体感应技术的不断进步和完善为微波雷达模块照明人体感应防盗器的研发和生产提供了有力支持。未来随着技术的不断创新和升级,该产品的性能和功能将得到进一步提升和完善。 政策支持推动行业发展。各国政府纷纷出台政策支持和鼓励智能家居产业的发展。这些政策的实施将为微波雷达模块照明人体感应防盗器的市场推广和应用提供有力保障。 七、结论 微波雷达模块照明人体感应防盗器作为一种创新的智能家居安全产品,在智能家居安全领域具有广阔的应用前景和市场需求。通过智能感应、节能环保、高灵敏度和精准识别等特点,它能够为家庭和商业场所提供高效、智能的安全保障。随着技术的不断进步和市场的快速发展,微波雷达模块照明人体感应防盗器有望在未来成为智能家居安全领域的重要组成部分,为人们创造更加安全、便捷和舒适的生活环境。 同时,我们也应该看到,微波雷达模块照明人体感应防盗器的研发和生产还面临着一些挑战和问题。例如,如何进一步提高产品的稳定性和可靠性、降低生产成本、提高用户体验等方面都需要不断进行探索和改进。因此,我们需要在技术创新和市场推广方面不断努力,推动微波雷达模块照明人体感应防盗器的不断发展和完善,为智能家居安全领域的发展做出更大的贡献。 总之,微波雷达模块照明人体感应防盗器作为一种创新的智能家居安全产品,具有广阔的市场前景和巨大的发展潜力。我们相信,在不久的将来,它将成为智能家居安全领域的重要力量,为人们创造更加安全、便捷和舒适的生活体验。
查看详情 查看详情
15
2024-04

路灯雷达感应模块多普勒人体感应开关:节能、智能、安全

发布时间: : 2024-04--15
随着智能城市建设的不断推进,路灯作为城市基础设施的重要组成部分,正逐渐从传统的固定照明模式向智能化、节能化方向转变。在这一过程中,雷达感应模块和多普勒人体感应开关技术的引入,为路灯控制带来了革命性的变革。本文旨在深入探讨这两种技术的应用原理、优势及其在路灯控制中的实际作用,以期为相关领域的从业者和技术人员提供有益的参考。 2. 雷达感应模块基础知识 2.1 雷达感应模块的工作原理 雷达感应模块基于雷达探测原理,通过发射和接收无线电波来感知周围物体的存在和运动状态。当雷达发射的无线电波遇到物体时,部分波束会被反射回来,形成回波信号。通过分析回波信号的时间延迟和频率变化,可以推算出物体的距离、速度和方向等信息。 2.2 雷达感应技术在路灯控制中的应用 在路灯控制中,雷达感应模块可以实时监测道路上的车辆和行人流量,并根据交通状况自动调节路灯的亮度和照明范围。这不仅可以提高道路照明的效率和安全性,还能有效节约能源和降低维护成本。 2.3 雷达感应模块的优势与挑战 雷达感应模块具有探测距离远、反应速度快、抗干扰能力强等优势,适用于各种复杂环境和天气条件。雷达感应模块的成本不高,不过对安装位置和角度的要求较为严格。 3. 多普勒人体感应开关详解 3.1 多普勒效应在感应开关中的应用 多普勒效应是指波源与观察者之间存在相对运动时,观察者所接收到的波的频率与波源发出的频率不同的现象。在感应开关中,多普勒效应被用来检测人体的移动。当人体接近或远离感应开关时,会引起电磁波的频率变化,从而触发开关动作。 3.2 人体感应开关的工作原理 人体感应开关通常采用微波或红外线作为探测介质。当有人体进入探测范围时,会吸收或反射部分探测信号,导致接收端接收到的信号强度发生变化。通过检测这种信号强度的变化,可以判断是否有人体存在,并触发相应的开关动作。 3.3 多普勒人体感应开关的特点 多普勒人体感应开关具有灵敏度高、误报率低、抗干扰能力强等特点。它可以在无需直接接触的情况下检测到人体的存在和运动状态,因此特别适用于需要频繁开关的场合,如走廊、洗手间等。 4. 路灯雷达感应模块与多普勒人体感应开关的结合 4.1 如何将两者有效结合 将雷达感应模块和多普勒人体感应开关有效结合,可以实现对路灯的更加智能化和人性化的控制。具体而言,可以通过以下步骤实现: 将雷达感应模块安装在路灯杆上或附近的高处,以获取更广泛的探测范围。 将多普勒人体感应开关安装在路灯附近的合适位置,以确保其能够准确检测到人体的存在和运动状态。 通过编程或控制器将雷达感应模块和多普勒人体感应开关的信号进行逻辑处理,以实现路灯的智能化控制。例如,当雷达感应模块检测到车辆或行人时,可以触发路灯的开启;当多普勒人体感应开关检测到人体存在时,可以保持路灯的开启状态;当两者均未检测到任何信号时,可以关闭路灯以节约能源。 4.2 结合后的性能提升与实际应用效果 通过结合雷达感应模块和多普勒人体感应开关,可以实现以下性能提升和实际应用效果: 提高照明效率:根据交通状况和人体活动情况自动调节路灯的亮度和照明范围,避免过度照明和能源浪费。 提高安全性:在夜间或恶劣天气条件下,通过自动开启路灯为行人提供足够的照明和安全保障。 降低维护成本:通过智能化控制减少路灯的频繁开关和损坏率,降低维护成本和人力成本。 4.3 可能遇到的问题及解决方案 在实际应用中,可能会遇到以下问题: 雷达感应模块和多普勒人体感应开关的探测范围可能存在重叠或盲区,导致漏检或误检。解决方案是优化设备的安装位置和角度,避免重叠和盲区。 环境因素如天气、温度、湿度等可能对设备的性能产生影响。解决方案是选择适应性强、稳定性好的设备,并进行定期的维护和校准。 不同品牌和型号的设备可能存在兼容性问题。解决方案是在选择设备时尽量选择同一品牌或型号,或确保设备之间具有良好的通信和兼容性。 5. 市场前景与技术展望 5.1 当前市场需求分析 随着智能城市建设的不断推进和人们对节能环保意识的提高,路灯雷达感应模块和多普勒人体感应开关的市场需求不断增长。特别是在城市主干道、商业区、公园等公共场所的照明控制中,这两种技术的应用前景广阔。 5.2 技术发展趋势与未来展望 未来,随着物联网、大数据、人工智能等技术的不断发展,路灯雷达感应模块和多普勒人体感应开关技术将呈现出以下发展趋势: 5.2.1 智能化与集成化 路灯控制系统将进一步智能化和集成化,实现多传感器、多通信协议的融合和协同工作。雷达感应模块和多普勒人体感应开关将与智能照明系统、交通管理系统等实现无缝对接,共同构建智慧城市照明与交通的综合管理平台。 5.2.2 数据驱动与优化决策 通过收集和分析雷达感应模块和多普勒人体感应开关的数据,可以实现对交通流量、行人活动模式等的精准掌握。这些数据将为城市规划和交通管理提供有力支持,推动城市照明和交通系统的优化决策和持续改进。 5.2.3 节能环保与可持续发展 在应对全球气候变化和能源危机的背景下,节能环保和可持续发展成为城市照明的重要目标。雷达感应模块和多普勒人体感应开关技术将通过智能控制和节能设计,有效降低路灯的能耗和维护成本,推动城市照明的绿色转型和可持续发展。 5.2.4 安全性与隐私保护 在智能化和大数据应用的过程中,安全性和隐私保护问题不容忽视。未来的路灯控制系统将加强数据加密、访问控制和隐私保护等方面的技术研发和应用,确保用户数据的安全性和隐私性。 5.3 相关政策与法规对市场的影响 政府在智能城市建设和节能环保方面的政策支持和法规制定,将对雷达感应模块和多普勒人体感应开关市场的发展产生重要影响。例如,政府推出的智慧城市建设规划、节能减排政策等,将推动相关技术的研发和应用,促进市场的快速增长。同时,对于数据安全、隐私保护等方面的法规制定和执行,也将对市场的发展和竞争格局产生深远影响。 6. 结论 本文详细探讨了雷达感应模块和多普勒人体感应开关在路灯控制中的应用原理、优势及市场前景。通过结合这两种技术,可以实现对路灯的智能化、节能化控制,提高照明效率和安全性,降低维护成本。未来,随着物联网、大数据、人工智能等技术的不断发展,路灯控制系统将进一步智能化和集成化,为智慧城市的建设和发展提供有力支持。同时,我们也应关注相关政策和法规对市场的影响,确保技术的健康发展和用户数据的安全与隐私保护。
查看详情 查看详情
上一页
1
2
...
255

地址:深圳市宝安区西乡街道麻布社区宝安互联网产业基地A区6栋7栋7706

邮箱:Sales@ferry-semi.com

版权所有©2020  深圳市飞睿科技有限公司  粤ICP备2020098907号    飞睿科技微波雷达wifi模块网站地图