这是描述信息
兆易创新GD32-GigaDevice-兆易创新代理

兆易创新GD32F307VCT6-GD32 ARM Cortex-M4 Microcontroller

兆易创新GD32F307VCT6-GD32 ARM Cortex-M4 Microcontroller GigaDevice Semiconductor Inc. GD32F307xx ARM® Cortex®-M4 32-bit MCU Datasheet General description The GD32F307xx device belongs to the mainstream line of GD32 MCU Family. It is a new 32-bit general-purpose microcontroller based on the ARM® Cortex®-M4 RISC core with best cost-performance ratio in terms of enhanced processing capacity, reduced power consumption and peripheral set. The Cortex®-M4 core features implements a full set of DSP instructions to address digital signal control markets that demand an efficient, easy-to-use blend of control and signal processing capabilities. It also provides a Memory Protection Unit (MPU) and powerful trace technology for enhanced application security and advanced debug support. The GD32F307xx device incorporates the ARM® Cortex®-M4 32-bit processor core operating at 120 MHz frequency with Flash accesses zero wait states to obtain maximum efficiency. It provides up to 1024 KB on-chip Flash memory and 96 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer up to two 12-bit 2.6 MSPS ADCs, two 12-bit DACs, up to ten general 16-bit timers, two 16-bit PWM advanced timers, and two 16-bit basic timers, as well as standard and advanced communication interfaces: up to three SPIs, two I2Cs, three USARTs and two UARTs, two I2Ss, two CANs, a USBFS and an ENET. The device operates from a 2.6 to 3.6 V power supply and available in –40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications. The above features make GD32F307xx devices suitable for a wide range of interconnection and advanced applications, especially in areas such as industrial control, consumer and handheld equipment, communication networks, embedded modules, human machine interface, security and alarm systems, graphic display, automotive navigation, IoT and so on.   Device information Table 2-1. GD32F307xx devices features and peripheral list   Part Number GD32F307xx   RC RE RG VC VE VG ZC ZE ZG Flash Code area (KB)   256   256   256   256   256   256   256   256   256   Data area (KB)   0   256   768   0   256   768   0   256   768   Total (KB) 256 512 1024 256 512 1024 256 512 1024 SRAM (KB) 96 96 96 96 96 96 96 96 96 Timers General timer(16-bit) 4 (1-4) 4 (1-4) 10 (1-4,8-13) 4 (1-4) 4 (1-4) 10 (1-4,8-13) 4 (1-4) 4 (1-4) 10 (1-4,8-13)   Advanced timer(16-bit) 1 (0) 2 (0,7) 2 (0,7) 1 (0) 2 (0,7) 2 (0,7) 2 (0,7) 2 (0,7) 2 (0,7)   Basic timer(16-bit) 2 (5-6) 2 (5-6) 2 (5-6) 2 (5-6) 2 (5-6) 2 (5-6) 2 (5-6) 2 (5-6) 2 (5-6)   SysTick 1 1 1 1 1 1 1 1 1   Watchdog 2 2 2 2 2 2 2 2 2   RTC 1 1 1 1 1 1 1 1 1 Connectivity   USART 3 (0-2) 3 (0-2) 3 (0-2) 3 (0-2) 3 (0-2) 3 (0-2) 3 (0-2) 3 (0-2) 3 (0-2)     UART 2 (3-4) 2 (3-4) 2 (3-4) 2 (3-4) 2 (3-4) 2 (3-4) 2 (3-4) 2 (3-4) 2 (3-4)   I2C 2 2 2
兆易创新GD32-GigaDevice-兆易创新代理
产品描述

兆易创新GD32F307VCT6-GD32 ARM Cortex-M4 Microcontroller

GigaDevice Semiconductor Inc.
GD32F307xx
ARM® Cortex®-M4 32-bit MCU
Datasheet

General description

The GD32F307xx device belongs to the mainstream line of GD32 MCU Family. It is a new 32-bit general-purpose microcontroller based on the ARM® Cortex®-M4 RISC core with best cost-performance ratio in terms of enhanced processing capacity, reduced power consumption and peripheral set. The Cortex®-M4 core features implements a full set of DSP instructions to address digital signal control markets that demand an efficient, easy-to-use blend of control and signal processing capabilities. It also provides a Memory Protection Unit (MPU) and powerful trace technology for enhanced application security and advanced debug support.
The GD32F307xx device incorporates the ARM® Cortex®-M4 32-bit processor core operating at 120 MHz frequency with Flash accesses zero wait states to obtain maximum efficiency. It provides up to 1024 KB on-chip Flash memory and 96 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer up to two 12-bit 2.6 MSPS ADCs, two 12-bit DACs, up to ten general 16-bit timers, two 16-bit PWM advanced timers, and two 16-bit basic timers, as well as standard and advanced communication interfaces: up to three SPIs, two I2Cs, three USARTs and two UARTs, two I2Ss, two CANs, a USBFS and an ENET.
The device operates from a 2.6 to 3.6 V power supply and available in –40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications.
The above features make GD32F307xx devices suitable for a wide range of interconnection and advanced applications, especially in areas such as industrial control, consumer and handheld equipment, communication networks, embedded modules, human machine interface, security and alarm systems, graphic display, automotive navigation, IoT and so on.
 

Device information

Table 2-1. GD32F307xx devices features and peripheral list

 

Part Number

GD32F307xx

 

RC

RE

RG

VC

VE

VG

ZC

ZE

ZG

Flash

Code area

(KB)

 

256

 

256

 

256

 

256

 

256

 

256

 

256

 

256

 

256

 

Data area

(KB)

 

0

 

256

 

768

 

0

 

256

 

768

 

0

 

256

 

768

 

Total (KB)

256

512

1024

256

512

1024

256

512

1024

SRAM (KB)

96

96

96

96

96

96

96

96

96

Timers

General

timer(16-bit)

4

(1-4)

4

(1-4)

10

(1-4,8-13)

4

(1-4)

4

(1-4)

10

(1-4,8-13)

4

(1-4)

4

(1-4)

10

(1-4,8-13)

 

Advanced

timer(16-bit)

1

(0)

2

(0,7)

2

(0,7)

1

(0)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

 

Basic

timer(16-bit)

2

(5-6)

2

(5-6)

2

(5-6)

2

(5-6)

2

(5-6)

2

(5-6)

2

(5-6)

2

(5-6)

2

(5-6)

 

SysTick

1

1

1

1

1

1

1

1

1

 

Watchdog

2

2

2

2

2

2

2

2

2

 

RTC

1

1

1

1

1

1

1

1

1

Connectivity

 

USART

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

 

 

UART

2

(3-4)

2

(3-4)

2

(3-4)

2

(3-4)

2

(3-4)

2

(3-4)

2

(3-4)

2

(3-4)

2

(3-4)

 

I2C

2

2

2

2

2

2

2

2

2

 

 

SPI/I2S

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

 

ENET

1

1

1

1

1

1

1

1

1

 

CAN

2

2

2

2

2

2

2

2

2

 

USBFS

1

1

1

1

1

1

1

1

1

GPIO

51

51

51

80

80

80

112

112

112

EXMC

0

0

0

1

1

1

1

1

1

EXTI

16

16

16

16

16

16

16

16

16

ADC Unit (CHs)

2(16)

2(16)

2(16)

2(16)

2(16)

2(16)

2(21)

2(21)

2(21)

DAC

2

2

2

2

2

2

2

2

2

Package

LQFP64

LQFP100

LQFP144

Memory map

Table 2-2. GD32F307xx memory map

Pre-defined

Regions

 

Bus

 

Address

 

Peripherals

External device

 

 

AHB3

0xA000 0000 - 0xA000 0FFF

EXMC - SWREG

 

External RAM

 

0x9000 0000 - 0x9FFF FFFF

EXMC - PC CARD

 

 

0x7000 0000 - 0x8FFF FFFF

EXMC - NAND

 

 

0x6000 0000 - 0x6FFF FFFF

EXMC - NOR/PSRAM/SRAM

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Peripheral

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AHB1

0x5000 0000 - 0x5003 FFFF

USBFS

 

 

0x4008 0000 - 0x4FFF FFFF

Reserved

 

 

0x4004 0000 - 0x4007 FFFF

Reserved

 

 

0x4002 BC00 - 0x4003 FFFF

Reserved

 

 

0x4002 B000 - 0x4002 BBFF

Reserved

 

 

0x4002 A000 - 0x4002 AFFF

Reserved

 

 

0x4002 8000 - 0x4002 9FFF

ENET

 

 

0x4002 6800 - 0x4002 7FFF

Reserved

 

 

0x4002 6400 - 0x4002 67FF

Reserved

 

 

0x4002 6000 - 0x4002 63FF

Reserved

 

 

0x4002 5000 - 0x4002 5FFF

Reserved

 

 

0x4002 4000 - 0x4002 4FFF

Reserved

 

 

0x4002 3C00 - 0x4002 3FFF

Reserved

 

 

0x4002 3800 - 0x4002 3BFF

Reserved

 

 

0x4002 3400 - 0x4002 37FF

Reserved

 

 

0x4002 3000 - 0x4002 33FF

CRC

 

 

0x4002 2C00 - 0x4002 2FFF

Reserved

 

 

0x4002 2800 - 0x4002 2BFF

Reserved

 

 

0x4002 2400 - 0x4002 27FF

Reserved

 

 

0x4002 2000 - 0x4002 23FF

FMC

 

 

0x4002 1C00 - 0x4002 1FFF

Reserved

 

 

0x4002 1800 - 0x4002 1BFF

Reserved

 

 

0x4002 1400 - 0x4002 17FF

Reserved

 

 

0x4002 1000 - 0x4002 13FF

RCU

 

 

0x4002 0C00 - 0x4002 0FFF

Reserved

 

 

0x4002 0800 - 0x4002 0BFF

Reserved

 

 

0x4002 0400 - 0x4002 07FF

DMA1

 

 

0x4002 0000 - 0x4002 03FF

DMA0

 

 

0x4001 8400 - 0x4001 FFFF

Reserved

 

 

0x4001 8000 - 0x4001 83FF

Reserved

 

 

APB2

0x4001 7C00 - 0x4001 7FFF

Reserved

 

 

0x4001 7800 - 0x4001 7BFF

Reserved

 

 

0x4001 7400 - 0x4001 77FF

Reserved

 

Pre-defined

Regions

 

Bus

 

Address

 

Peripherals

 

 

0x4001 7000 - 0x4001 73FF

Reserved

 

 

0x4001 6C00 - 0x4001 6FFF

Reserved

 

 

0x4001 6800 - 0x4001 6BFF

Reserved

 

 

0x4001 5C00 - 0x4001 67FF

Reserved

 

 

0x4001 5800 - 0x4001 5BFF

Reserved

 

 

0x4001 5400 - 0x4001 57FF

TIMER10

 

 

0x4001 5000 - 0x4001 53FF

TIMER9

 

 

0x4001 4C00 - 0x4001 4FFF

TIMER8

 

 

0x4001 4800 - 0x4001 4BFF

Reserved

 

 

0x4001 4400 - 0x4001 47FF

Reserved

 

 

0x4001 4000 - 0x4001 43FF

Reserved

 

 

0x4001 3C00 - 0x4001 3FFF

Reserved

 

 

0x4001 3800 - 0x4001 3BFF

USART0

 

 

0x4001 3400 - 0x4001 37FF

TIMER7

 

 

0x4001 3000 - 0x4001 33FF

SPI0

 

 

0x4001 2C00 - 0x4001 2FFF

TIMER0

 

 

0x4001 2800 - 0x4001 2BFF

ADC1

 

 

0x4001 2400 - 0x4001 27FF

ADC0

 

 

0x4001 2000 - 0x4001 23FF

GPIOG

 

 

0x4001 1C00 - 0x4001 1FFF

GPIOF

 

 

0x4001 1800 - 0x4001 1BFF

GPIOE

 

 

0x4001 1400 - 0x4001 17FF

GPIOD

 

 

0x4001 1000 - 0x4001 13FF

GPIOC

 

 

0x4001 0C00 - 0x4001 0FFF

GPIOB

 

 

0x4001 0800 - 0x4001 0BFF

GPIOA

 

 

0x4001 0400 - 0x4001 07FF

EXTI

 

 

0x4001 0000 - 0x4001 03FF

AFIO

 

 

 

 

 

 

 

 

 

APB1

0x4000 CC00 - 0x4000 FFFF

Reserved

 

 

0x4000 C800 - 0x4000 CBFF

CTC

 

 

0x4000 C400 - 0x4000 C7FF

Reserved

 

 

0x4000 C000 - 0x4000 C3FF

Reserved

 

 

0x4000 8000 - 0x4000 BFFF

Reserved

 

 

0x4000 7C00 - 0x4000 7FFF

Reserved

 

 

0x4000 7800 - 0x4000 7BFF

Reserved

 

 

0x4000 7400 - 0x4000 77FF

DAC

 

 

0x4000 7000 - 0x4000 73FF

PMU

 

 

0x4000 6C00 - 0x4000 6FFF

BKP

 

 

0x4000 6800 - 0x4000 6BFF

CAN1

 

 

0x4000 6400 - 0x4000 67FF

CAN0

 

 

0x4000 6000 - 0x4000 63FF

CAN SRAM 512 bytes

 

Pre-defined

Regions

 

Bus

 

Address

 

Peripherals

 

 

0x4000 5C00 - 0x4000 5FFF

Reserved

 

 

0x4000 5800 - 0x4000 5BFF

I2C1

 

 

0x4000 5400 - 0x4000 57FF

I2C0

 

 

0x4000 5000 - 0x4000 53FF

UART4

 

 

0x4000 4C00 - 0x4000 4FFF

UART3

 

 

0x4000 4800 - 0x4000 4BFF

USART2

 

 

0x4000 4400 - 0x4000 47FF

USART1

 

 

0x4000 4000 - 0x4000 43FF

Reserved

 

 

0x4000 3C00 - 0x4000 3FFF

SPI2/I2S2

 

 

0x4000 3800 - 0x4000 3BFF

SPI1/I2S1

 

 

0x4000 3400 - 0x4000 37FF

Reserved

 

 

0x4000 3000 - 0x4000 33FF

FWDGT

 

 

0x4000 2C00 - 0x4000 2FFF

WWDGT

 

 

0x4000 2800 - 0x4000 2BFF

RTC

 

 

0x4000 2400 - 0x4000 27FF

Reserved

 

 

0x4000 2000 - 0x4000 23FF

TIMER13

 

 

0x4000 1C00 - 0x4000 1FFF

TIMER12

 

 

0x4000 1800 - 0x4000 1BFF

TIMER11

 

 

0x4000 1400 - 0x4000 17FF

TIMER6

 

 

0x4000 1000 - 0x4000 13FF

TIMER5

 

 

0x4000 0C00 - 0x4000 0FFF

TIMER4

 

 

0x4000 0800 - 0x4000 0BFF

TIMER3

 

 

0x4000 0400 - 0x4000 07FF

TIMER2

 

 

0x4000 0000 - 0x4000 03FF

TIMER1

 

 

 

SRAM

 

 

 

AHB

0x2007 0000 - 0x3FFF FFFF

Reserved

 

 

0x2006 0000 - 0x2006 FFFF

Reserved

 

 

0x2003 0000 - 0x2005 FFFF

Reserved

 

 

0x2001 8000 - 0x2002 FFFF

Reserved

 

 

0x2000 0000 - 0x2001 7FFF

SRAM

 

 

 

 

 

 

 

Code

 

 

 

 

 

 

 

AHB

0x1FFF F810 - 0x1FFF FFFF

Reserved

 

 

0x1FFF F800 - 0x1FFF F80F

Option Bytes

 

 

0x1FFF F000 - 0x1FFF F7FF

 

 

Boot loader

 

 

0x1FFF C010 - 0x1FFF EFFF

 

 

 

0x1FFF C000 - 0x1FFF C00F

 

 

 

0x1FFF B000 - 0x1FFF BFFF

 

 

 

0x1FFF 7A10 - 0x1FFF AFFF

Reserved

 

 

0x1FFF 7800 - 0x1FFF 7A0F

Reserved

 

 

0x1FFF 0000 - 0x1FFF 77FF

Reserved

 

 

0x1FFE C010 - 0x1FFE FFFF

Reserved

 

 

0x1FFE C000 - 0x1FFE C00F

Reserved

 

 

Pre-defined

Regions

 

Bus

 

Address

 

Peripherals

 

 

0x1001 0000 - 0x1FFE BFFF

Reserved

0x1000 0000 - 0x1000 FFFF

Reserved

0x083C 0000 - 0x0FFF FFFF

Reserved

0x0830 0000 - 0x083B FFFF

Reserved

0x0810 0000 - 0x082F FFFF

Reserved

0x0800 0000 - 0x080F FFFF

Main Flash

0x0030 0000 - 0x07FF FFFF

Reserved

0x0010 0000 - 0x002F FFFF

 

Aliased to Main Flash or Boot loader

0x0002 0000 - 0x000F FFFF

0x0000 0000 - 0x0001 FFFF

 

ARM® Cortex®-M4 core

The ARM® Cortex®-M4 processor is a high performance embedded processor with DSP instructions which allow efficient signal processing and complex algorithm execution. It brings an efficient, easy-to-use blend of control and signal processing capabilities to meet the digital signal control markets demand. The processor is highly configurable enabling a wide range of implementations from those requiring floating point operations, memory protection and powerful trace technology to cost sensitive devices requiring minimal area, while delivering outstanding computational performance and an advanced system response to interrupts.
32-bit ARM® Cortex®-M4 processor core
Up to 120 MHz operation frequency
Single-cycle multiplication and hardware divider
Integrated DSP instructions
Integrated Nested Vectored Interrupt Controller (NVIC)
24-bit SysTick timer

The Cortex®-M4 processor is based on the ARMv7-M architecture and supports both Thumb and Thumb-2 instruction sets. Some system peripherals listed below are also provided by Cortex®-M4:
Internal Bus Matrix connected with ICode bus, DCode bus, System bus, Private Peripheral Bus (PPB) and debug accesses (AHB-AP)
Nested Vectored Interrupt Controller (NVIC)
Flash Patch and Breakpoint (FPB)
Data Watchpoint and Trace (DWT)
Instrument Trace Macrocell (ITM)
Memory Protection Unit (MPU)
Serial Wire JTAG Debug Port (SWJ-DP)
Trace Port Interface Unit (TPIU)
Floating Point Unit (FPU)


On-chip memory

Up to 1024 Kbytes of Flash memory, including code Flash and data Flash
96 KB of SRAM

The ARM® Cortex®-M4 processor is structured in Harvard architecture which can use separate buses to fetch instructions and load/store data. 1024 Kbytes of inner flash at most, which includes code Flash that available for storing programs and data, and accessed (R/W) at CPU clock speed with zero wait states. An extra data Flash is also included for storing data mainly. Table 2-2. GD32F307xx memory map shows the memory of the GD32F307xx

series of devices, including Flash, SRAM, peripheral, and other pre-defined regions.


Clock, reset and supply management

Internal 8 MHz factory-trimmed RC and external 4 to 32 MHz crystal oscillator
Internal 48 MHz RC oscillator
Internal 40 KHz RC calibrated oscillator and external 32.768 KHz crystal oscillator
2.6 to 3.6 V application supply and I/Os
Supply Supervisor: POR (Power On Reset), PDR (Power Down Reset), and low voltage detector (LVD)
The Clock Control Unit (CCU) provides a range of oscillator and clock functions. These include internal RC oscillator and external crystal oscillator, high speed and low speed two types. Several prescalers allow the frequency configuration of the AHB and two APB domains. The maximum frequency of the two AHB domains are 120 MHz The maximum frequency of the two APB domains including APB1 is 60 MHz and APB2 is 120 MHz See Figure 2-5 GD32F307xx clock tree for details on the clock tree.
The Reset Control Unit (RCU) controls three kinds of reset: system reset resets the processor core and peripheral IP components. Power-on reset (POR) and power-down reset (PDR) are always active, and ensures proper operation starting from/down to 2.6 V. The device remains in reset mode when VDD is below a specified threshold. The embedded low voltage detector (LVD) monitors the power supply, compares it to the voltage threshold and generates an interrupt as a warning message for leading the MCU into security.
Power supply schemes:
VDD range: 2.6 to 3.6 V, external power supply for I/Os and the internal regulator. Provided externally through VDD pins.
VSSA, VDDA range: 2.6 to 3.6 V, external analog power supplies for ADC, reset blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.
VBAT range: 1.8 to 3.6 V, power supply for RTC, external clock 32 KHz oscillator and backup registers (through power switch) when VDD is not present.

Boot modes

At startup, boot pins are used to select one of three boot options:
Boot from main flash memory (default)
Boot from system memory
Boot from on-chip SRAM

The boot loader is located in the internal boot ROM memory (system memory). It is used to reprogram the Flash memory by using USART0 (PA9 and PA10), USART1 (PD5 and PD6) and USBFS (PA9, PA11 and PA12) is also available for boot functions. It also can be used to transfer and update the Flash memory code, the data and the vector table sections. In default

condition, boot from bank0 of Flash memory is selected. It also supports to boot from bank1 of Flash memory by setting a bit in option bytes.

Power saving modes

The MCU supports three kinds of power saving modes to achieve even lower power consumption. They are sleep mode, deep-sleep mode and standby mode. These operating modes reduce the power consumption and allow the application to achieve the best balance between the CPU operating time, speed and power consumption.
Sleep mode
In sleep mode, only the clock of CPU core is off. All peripherals continue to operate and any interrupt/event can wake up the system.
Deep-sleep mode
In deep-sleep mode, all clocks in the 1.2V domain are off, and all of the high speed crystal oscillator (IRC8M, HXTAL) and PLL are disabled. Only the contents of SRAM and registers are retained. Any interrupt or wakeup event from EXTI lines can wake up the system from the deep-sleep mode including the 16 external lines, the RTC alarm, the LVD output, the USB wakeup and ENET wakeup. When exiting the deep-sleep mode, the IRC8M is selected as the system clock.
Standby mode
In standby mode, the whole 1.2V domain is power off, the LDO is shut down, and all of IRC8M, HXTAL and PLL are disabled. The contents of SRAM and registers (except backup registers) are lost. There are four wakeup sources for the standby mode, including the external reset from NRST pin, the RTC, the FWDG reset, and the rising edge on WKUP pin.

Analog to digital converter (ADC)

12-bit SAR ADC's conversion rate is up to 2.6 MSPS
12-bit, 10-bit, 8-bit or 6-bit configurable resolution
Hardware oversampling ratio adjustable from 2 to 256x improves resolution to 16-bit
Input voltage range: VSSA to VDDA (2.6 to 3.6 V)
Temperature sensor

Up to two 12-bit 2.6 MSPS multi-channel ADCs are integrated in the device. It has a total of 18 multiplexed channels: 16 external channels, 1 channel for internal temperature sensor (VSENSE), and 1 channel for internal reference voltage (VREFINT). The input voltage range is between 2.6 V and 3.6 V. An on-chip hardware oversampling scheme improves performance while off-loading the related computational burden from the CPU. An analog watchdog block can be used to detect the channels, which are required to remain within a specific threshold window. A configurable channel management block can be used to perform conversions in single, continuous, scan or discontinuous mode to support more advanced use.

The ADC can be triggered from the events generated by the general level 0 timers (TIMERx) and the advanced timers (TIMER0 and TIMER7) with internal connection. The temperature sensor can be used to generate a voltage that varies linearly with temperature. It is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage in a digital value.

Digital to analog converter (DAC)

Two 12-bit DACs with independent output channels
8-bit or 12-bit mode in conjunction with the DMA controller

The two 12-bit buffered DACs are used to generate variable analog outputs. The DAC channels can be triggered by the timer or EXTI with DMA support. In dual DAC channel operation, conversions could be done independently or simultaneously. The maximum output value of the DAC is VREF+.

DMA

7 channel DMA0 controller and 5 channel DMA1 controller
Peripherals supported: Timers, ADC, SPIs, I2Cs, USARTs, DAC, I2S

The flexible general-purpose DMA controllers provide a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other system functions. Three types of access method are supported: peripheral to memory, memory to peripheral, memory to memory
Each channel is connected to fixed hardware DMA requests. The priorities of DMA channel requests are determined by software configuration and hardware channel number. Transfer size of source and destination are independent and configurable.

General-purpose inputs/outputs (GPIOs)

Up to 112 fast GPIOs, all mappable on 16 external interrupt lines
Analog input/output configurable
Alternate function input/output configurable

There are up to 112 general purpose I/O pins (GPIO) in GD32F307xx, named PA0 ~ PA15 and  PB0  ~ PB15,  PC0  ~  PC15,  PD0  ~ PD15,  PE0  ~  PE15,  PF0-PF15,  PG0-PG15 to
implement logic input/output functions. Each of the GPIO ports has related control and configuration registers to satisfy the requirements of specific applications. The external interrupts on the GPIO pins of the device have related control and configuration registers in the Interrupt/event controller (EXTI). The GPIO ports are pin-shared with other alternative functions (AFs) to obtain maximum flexibility on the package pins. Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-

up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current capable except for analog inputs.

Timers and PWM generation

Two 16-bit advanced timer (TIMER0 & TIMER7), ten 16-bit general timers (TIMER1 ~ TIMER4, TIMER8 ~ TIMER13), and two 16-bit basic timer (TIMER5 & TIMER6)
Up to 4 independent channels of PWM, output compare or input capture for each general timer and external trigger input
16-bit, motor control PWM advanced timer with programmable dead-time generation for output match
Encoder interface controller with two inputs using quadrature decoder
24-bit SysTick timer down counter
2 watchdog timers (Free watchdog timer and window watchdog timer)

The advanced timer (TIMER0 & TIMER7) can be used as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable dead-time generation. It can also be used as a complete general timer. The 4 independent channels can be used for input capture, output compare, PWM generation (edge-aligned or center-aligned counting modes) and single pulse mode output. If configured as a general 16-bit timer, it has the same functions as the TIMERx timer. It can be synchronized with external signals or to interconnect with other general timers together which have the same architecture and features.
The general timer, can be used for a variety of purposes including general time, input signal pulse width measurement or output waveform generation such as a single pulse generation or PWM output, up to 4 independent channels for input capture/output compare. TIMER1 ~ TIMER4 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. TIMER8 ~ TIMER13 is based on a 16-bit auto-reload upcounter and a 16-bit prescaler. The general timer also supports an encoder interface with two inputs using quadrature decoder.
The basic timer, known as TIMER5 & TIMER6, are mainly used for DAC trigger generation. They can also be used as a simple 16-bit time base.
The GD32F307xx have two watchdog peripherals, free watchdog timer and window watchdog timer. They offer a combination of high safety level, flexibility of use and timing accuracy.
The free watchdog timer includes a 12-bit down-counting counter and an 8-bit prescaler, It is clocked from an independent 40 KHz internal RC and as it operates independently of the main clock, it can operate in deep-sleep and standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management.
The window watchdog timer is based on a 7-bit down counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early wakeup interrupt capability and the counter can be frozen in

debug mode.
The SysTick timer is dedicated for OS, but could also be used as a standard down counter. The features are shown below:
A 24-bit down counter
Auto reload capability
Maskable system interrupt generation when the counter reaches 0
Programmable clock source


Real time clock (RTC)

32-bit up-counter with a programmable 20-bit prescaler
Alarm function
Interrupt and wakeup event

The real time clock is an independent timer which provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and an expected interrupt. The RTC features a 32-bit programmable counter for long-term measurement using the compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 KHz from external crystal oscillator.
Inter-integrated circuit (I2C)

Up to two I2C bus interfaces can support both master and slave mode with a frequency up to 1 MHz (Fast mode plus)
Provide arbitration function, optional PEC (packet error checking) generation and checking
Supports 7-bit and 10-bit addressing mode and general call addressing mode

The I2C interface is an internal circuit allowing communication with an external I2C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line (SDA) and a serial clock line (SCL). The I2C module provides several data transfer rates of up to 100 KHz in standard mode, up to 400 KHz in fast mode and up to 1 MHz in the fast mode plus. The I2C module also has an arbitration detect function to prevent the situation where more than one master attempts to transmit data to the I2C bus at the same time. A CRC-8 calculator is also provided in I2C interface to perform packet error checking for I2C data.

Serial peripheral interface (SPI)

Up to three SPI interfaces with a frequency of up to 30 MHz
Support both master and slave mode

Hardware CRC calculation and transmit automatic CRC error checking
Quad-SPI configuration available in master mode (only in SPI0)

The SPI interface uses 4 pins, among which are the serial data input and output lines (MISO & MOSI), the clock line (SCK) and the slave select line (NSS). Both SPIs can be served by the DMA controller. The SPI interface may be used for a variety of purposes, including simplex synchronous transfers on two lines with a possible bidirectional data line or reliable communication using CRC checking. Quad-SPI master mode is also supported in SPI0.

Universal synchronous asynchronous receiver transmitter (USART)
Up to three USARTs and two UARTs with operating frequency up to 7.5M Bits/s
Supports both asynchronous and clocked synchronous serial communication modes
IrDA SIR encoder and decoder support
LIN break generation and detection
USARTs support ISO 7816-3 compliant smart card interface

The USART (USART0, USART1 and USART2) and UART (UART3 & UART4) are used to
translate data between parallel and serial interfaces, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. It is also commonly used for RS-232 standard communication. The USART/UART includes a programmable baud rate generator which is capable of dividing the system clock to produce a dedicated clock for the USART transmitter and receiver. The USART/UART also supports DMA function for high speed data communication except UART4.

Inter-IC sound (I2S)

Two I2S bus Interfaces with sampling frequency from 8 KHz to 192 KHz
Support either master or slave mode

The Inter-IC sound (I2S) bus provides a standard communication interface for digital audio applications by 3-wire serial lines. GD32F307xx contain two I2S-bus interfaces that can be operated with 16/32 bit resolution in master or slave mode, pin multiplexed with SPI1 and SPI2. The audio sampling frequency from 8 KHz to 192 KHz is supported.

Universal serial bus full-speed interface (USBFS)

One USB device/host/full-speed Interface with frequency up to 12 Mbit/s
Internal 48 MHz oscillator (IRC48M) support crystal-less operation
Internal main PLL for USBCLK compliantly
Internal USBFS PHY support

The Universal Serial Bus (USB) is a 4-wire bus with 4 bidirectional endpoints. The device controller enables 12 Mbit/s data exchange with integrated transceivers. Transaction formatting is performed by the hardware, including CRC generation and checking. It supports both host and device modes, as well as OTG mode with Host Negotiation Protocol (HNP) and Session Request Protocol (SRP). The controller contains a full-speed USB PHY internal. For full-speed or low-speed operation, no more external PHY chip is needed. It supports all the four types of transfer (control, bulk, Interrupt and isochronous) defined in USB 2.0 protocol. The required precise 48 MHz clock which can be generated from the internal main PLL (the clock source must use an HXTAL crystal oscillator) or by the internal 48 MHz oscillator (IRC48M) in automatic trimming mode that allows crystal-less operation.

Controller area network (CAN)

Two CAN2.0B interface with communication frequency up to 1 Mbit/s
Internal main PLL for CAN CLK compliantly

Controller area network (CAN) is a method for enabling serial communication in field bus. The CAN protocol has been used extensively in industrial automation and automotive applications. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three mailboxes for transmission and two FIFOs of three message deep for reception. It also provides 28 scalable/configurable identifier filter banks for selecting the incoming messages needed and discarding the others.

Ethernet (ENET)

IEEE 802.3 compliant media access controller (MAC) for Ethernet LAN
10/100 Mbit/s rates with dedicated DMA controller and SRAM
Support hardware precision time protocol (PTP) with conformity to IEEE 1588

The Ethernet media access controller (MAC) conforms to IEEE 802.3 specifications and fully supports IEEE 1588 standards. The embedded MAC provides the interface to the required external network physical interface (PHY) for LAN bus connection via an internal media independent interface (MII) or a reduced media independent interface (RMII). The number of MII signals provided up to 16 with 25 MHz output and RMII up to 7 with 50 MHz output. The function of 32-bit CRC checking is also available.

External memory controller (EXMC)

Supported external memory: SRAM, PSRAM, ROM and NOR-Flash, NAND Flash and PC card
Provide ECC calculating hardware module for NAND Flash memory block
Up to 16-bit data bus
Support to interface with Motorola 6800 and Intel 8080 type LCD directly

External memory controller (EXMC) is an abbreviation of external memory controller. It is divided in to several sub-banks for external device support, each sub-bank has its own chip selection signal but at one time, only one bank can be accessed. The EXMC support code execution from external memory except NAND Flash and PC card. The EXMC also can be configured to interface with the most common LCD module of Motorola 6800 and Intel 8080 series and reduce the system cost and complexity.

Debug mode

Serial wire JTAG debug port (SWJ-DP)

The ARM® SWJ-DP Interface is embedded and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

Package and operation temperature

LQFP144 (GD32F307Zx), LQFP100 (GD32F307Vx) and LQFP64 (GD32F307Rx)
Operation temperature range: -40°C to +85°C (industrial level)

扫二维码用手机看

uA级别智能门锁低功耗雷达模块让门锁更加智能省电节约功耗

uA级别智能门锁低功耗雷达模块让门锁更加智能省电节约功耗,指纹门锁并不是什么新鲜事,我相信每个人都很熟悉。随着近年来智能家居的逐步普及,指纹门锁也进入了成千上万的家庭。今天的功耗雷达模块指纹门锁不仅消除了繁琐的钥匙,而且还提供了各种智能功能,uA级别智能门锁低功耗雷达模块用在智能门锁上,可以实现门锁的智能感应屏幕,使电池寿命延长3-5倍,如与其他智能家居连接,成为智能场景的开关。所以今天的指纹门锁更被称为智能门锁。 今天,让我们来谈谈功耗雷达模块智能门锁的安全性。希望能让更多想知道智能门锁的朋友认识下。 指纹识别是智能门锁的核心 指纹识别技术在我们的智能手机上随处可见。从以前的实体指纹识别到屏幕下的指纹识别,可以说指纹识别技术已经相当成熟。指纹识别可以说是整个uA级低功耗雷达模块智能门锁的核心。 目前主要有三种常见的指纹识别方法,即光学指纹识别、半导体指纹识别和超声指纹识别。 光学指纹识别 让我们先谈谈光学指纹识别的原理实际上是光的反射。我们都知道指纹本身是不均匀的。当光照射到我们的指纹上时,它会反射,光接收器可以通过接收反射的光来绘制我们的指纹。就像激光雷达测绘一样。 光学指纹识别通常出现在打卡机上,手机上的屏幕指纹识别技术也使用光学指纹识别。今天的光学指纹识别已经达到了非常快的识别速度。 然而,光学指纹识别有一个缺点,即硬件上的活体识别无法实现,容易被指模破解。通常,活体识别是通过软件算法进行的。如果算法处理不当,很容易翻车。 此外,光学指纹识别也容易受到液体的影响,湿手解锁的成功率也会下降。 超声指纹识别 超声指纹识别也被称为射频指纹识别,其原理与光学类型相似,但超声波使用声波反射,实际上是声纳的缩小版本。因为使用声波,不要担心水折射会降低识别率,所以超声指纹识别可以湿手解锁。然而,超声指纹识别在防破解方面与光学类型一样,不能实现硬件,可以被指模破解,活体识别仍然依赖于算法。 半导体指纹识别 半导体指纹识别主要采用电容、电场(即我们所说的电感)、温度和压力原理来实现指纹图像的收集。当用户将手指放在前面时,皮肤形成电容阵列的极板,电容阵列的背面是绝缘极板。由于不同区域指纹的脊柱与谷物之间的距离也不同,因此每个单元的电容量随之变化,从而获得指纹图像。半导体指纹识别具有价格低、体积小、识别率高的优点,因此大多数uA级低功耗雷达模块智能门锁都采用了这种方案。半导体指纹识别的另一个功能是活体识别。传统的硅胶指模无法破解。 当然,这并不意味着半导体可以百分识别活体。所谓的半导体指纹识别活体检测不使用指纹活体体征。本质上,它取决于皮肤的材料特性,这意味着虽然传统的硅胶指模无法破解。 一般来说,无论哪种指纹识别,都有可能被破解,只是说破解的水平。然而,今天的指纹识别,无论是硬件生活识别还是算法生活识别,都相对成熟,很难破解。毕竟,都可以通过支付级别的认证,大大保证安全。 目前,市场上大多数智能门锁仍将保留钥匙孔。除了指纹解锁外,用户还可以用传统钥匙开门。留下钥匙孔的主要目的是在指纹识别故障或智能门锁耗尽时仍有开门的方法。但由于有钥匙孔,它表明它可以通过技术手段解锁。 目前市场上的锁等级可分为A、B、C三个等级,这三个等级主要是通过防暴开锁和防技术开锁的程度来区分的。A级锁要求技术解锁时间不少于1分钟,B级锁要求不少于5分钟。即使是高级别的C级锁也只要求技术解锁时间不少于10分钟。 也就是说,现在市场上大多数门锁,无论是什么级别,在专业的解锁大师面前都糊,只不过是时间长短。 安全是重要的,是否安全增加了人们对uA级别低功耗雷达模块智能门锁安全的担忧。事实上,现在到处都是摄像头,强大的人脸识别,以及移动支付的出现,使家庭现金减少,所有这些都使得入室盗窃的成本急剧上升,近年来各省市的入室盗窃几乎呈悬崖状下降。 换句话说,无论锁有多安全,无论锁有多难打开,都可能比在门口安装摄像头更具威慑力。 因此,担心uA级别低功耗雷达模块智能门锁是否不安全可能意义不大。毕竟,家里的防盗锁可能不安全。我们应该更加关注门锁能给我们带来多少便利。 我们要考虑的是智能门锁的兼容性和通用性。毕竟,智能门锁近年来才流行起来。大多数人在后期将普通机械门锁升级为智能门锁。因此,智能门锁能否与原门兼容是非常重要的。如果不兼容,发现无法安装是一件非常麻烦的事情。 uA级别低功耗雷达模块智能门锁主要是为了避免带钥匙的麻烦。因此,智能门锁的便利性尤为重要。便利性主要体现在指纹的识别率上。手指受伤导致指纹磨损或老年人指纹较浅。智能门锁能否识别是非常重要的。 当然,如果指纹真的失效,是否有其他解锁方案,如密码解锁或NFC解锁。还需要注意密码解锁是否有虚假密码等防窥镜措施。 当然,智能门锁的耐久性也是一个需要特别注意的地方。uA级别低功耗雷达模块智能门锁主要依靠内部电池供电,这就要求智能门锁的耐久性尽可能好,否则经常充电或更换电池会非常麻烦。
点击查看更多
14
2022-01

微波雷达传感器雷达感应浴室镜上的应用

发布时间: : 2022-01--14
微波雷达传感器雷达感应浴室镜上的应用,如今,家用电器的智能化已成为一种常态,越来越多的人开始在自己的浴室里安装智能浴室镜。但是还有很多人对智能浴镜的理解还不够深入,今天就来说说这个话题。 什么是智能浴室镜?智慧型浴室镜,顾名思义,就是卫浴镜子智能化升级,入门级产品基本具备了彩灯和镜面触摸功能,更高档次的产品安装有微波雷达传感器智能感应,当感应到有人接近到一定距离即可开启亮灯或者亮屏操作,也可三色无极调,智能除雾,语音交互,日程安排备忘,甚至在镜子上看电视,听音乐,气象预报,问题查询,智能控制,健康管理等。 智能化雷达感应浴室镜与普通镜的区别,为什么要选TA?,就功能而言,普通浴镜价格用它没有什么压力!而且雷达感应智能浴镜会让人犹豫不决是否“值得一看”。就功能和应用而言,普通浴镜功能单一,而微波雷达传感器智能浴室镜功能创新:镜子灯光色温和亮度可以自由调节,镜面还可以湿手触控,智能除雾,既环保又健康! 尽管智能浴镜比较新颖,但功能丰富,体验感更好,特别是入门级的智能浴镜,具有基础智能化功能,真的适合想体验下智能化的小伙伴们。 给卫生间安装微波雷达传感器浴室镜安装注意什么? ①确定智能浴室镜的安装位置,因为是安装时在墙壁上打孔,一旦安装后一般无法移动位置。 ②在选购雷达感应智能浴室镜时,根据安装位置确定镜子的形状和尺寸。 ③确定智能浴镜的安装位置后,在布线时为镜子预留好电源线。 ④确定微波雷达传感器智能浴镜的安装高度,一般智能浴镜的标准安装高度约85cm(从地砖到镜子底),具体安装高度要根据家庭成员的身高及使用习惯来决定。 ⑤镜面遇到污渍,可用酒精或30%清洁稀释液擦洗,平时可用干毛巾养护,注意多通风。
查看详情 查看详情
07
2022-02

冰箱屏幕唤醒微波雷达传感器屏幕唤醒性能强悍智能感应

发布时间: : 2022-02--07
冰箱屏幕唤醒微波雷达传感器屏幕唤醒性能强悍智能感应,随着年轻一代消费观念的转变,冰箱作为厨房和客厅的核心家用电器之一,也升级为健康、智能、高端的形象。在新产品发布会上,推出了大屏幕的冰箱,不仅屏幕优秀,而且微波雷达传感器屏幕唤醒性能强大。 大屏智能互联,听歌看剧购物新体验 冰箱植入冰箱屏幕唤醒微波雷达传感器触摸屏,重新定义了冰箱的核心价值。除了冰箱的保鲜功能外,该显示屏还集控制中心、娱乐中心和购物中心于一体,让您在无聊的烹饪过程中不会落后于听歌、看剧和购物。新的烹饪体验是前所未有的。 不仅如此,21.5英寸的屏幕也是整个房子智能互联的互动入口。未来的家将是一个充满屏幕的家。冰箱可以通过微波雷达传感器屏幕与家庭智能产品连接。烹饪时,你可以通过冰箱观看洗衣机的工作,当你不能腾出手来照顾孩子时,你可以通过冰箱屏幕连接家庭摄像头,看到孩子的情况。冰箱的推出标志着屏幕上的未来之家正在迅速到来。 管理RFID食材,建立健康的家庭生活 据报道,5G冰箱配备了RFID食品材料管理模块,用户将自动记录和储存食品,无需操作。此外,冰箱还可以追溯食品来源,监控食品材料从诞生到用户的整个过程,以确保食品安全;当食品即将过期时,冰箱会自动提醒用户提供健康的饮食和生活。 风冷无霜,清新无痕 冰箱的出现是人类延长食品保存期的一项伟大发明。一个好的冰箱必须有很强的保存能力。5g冰箱采用双360度循环供气系统。智能补水功能使食品原料享受全方位保鲜,紧紧锁住水分和营养,防止食品原料越来越干燥。此外,该送风系统可将其送到冰箱的每个角落,消除每个储藏空间的温差,减少手工除霜的麻烦,使食品不再粘连。 进口电诱导保鲜技术,创新黑科技加持 针对传统冰箱保存日期不够长的痛点,5g互联网冰箱采用日本进口电诱导保存技术,不仅可以实现水果储存冰箱2周以上不腐烂发霉,还可以使蔬菜储存25天不发黄、不起皱。在-1℃~-5℃下,配料不易冻结,储存时间较长。冷冻食品解冻后无血,营养大化。此外,微波雷达传感器5g冰箱还支持-7℃~-24℃的温度调节,以满足不同配料的储存要求。 180°矢量变频,省电时更安静 一台好的压缩机对冰箱至关重要。冰箱配备了变频压缩机。180°矢量变频技术可根据冷藏室和冷冻室的需要有效提供冷却,达到食品原料的保鲜效果。180°矢量变频技术不仅大大降低了功耗,而且以非常低的分贝操作机器。保鲜效果和节能安静的技术冰箱可以在许多智能冰箱中占有一席之地,仅仅通过这种搭配就吸引了许多消费者的青睐。 配备天然草本滤芯,不再担心串味 各种成分一起储存在冰箱中,难以避免串味。此外,冰箱内容易滋生细菌,冰箱总是有异味。针对这一问题,冰箱创新配置了天然草本杀菌除臭滤芯。该滤芯提取了多种天然草本活性因子,可有效杀菌99.9%,抑制冰箱异味,保持食材新鲜。不仅如此,这个草本滤芯可以更快、更方便、更无忧地拆卸。家里有冰箱,开始健康保鲜的生活。 目前,冰箱屏幕唤醒微波雷达传感器正在继续推动家庭物联网的快速普及,相信在不久的将来,智能家电将成为互动终端。
查看详情 查看详情
27
2022-05

基于乐鑫ESP32的可穿戴运动追踪器AI开发板支持图像识别和音频处理

发布时间: : 2022-05--27
基于乐鑫ESP32的可穿戴运动追踪器AI开发板支持图像识别和音频处理,独立创客elektroThing构建的Tracer是一个基于ESP32的开源惯性测量单元检测器。你是否想过在物体上粘贴一个惯性测量单元(IMU)来跟踪它的姿势和运动状态?Tracer能够提供性能安全可靠且低成本的物体跟踪功能。使用魔术贴即可轻松地将Tracer固定在物体上。它可以随着自行车的车架倾斜并进行节奏跟踪,也可以记录网球拍的击球次数,甚至能区分上旋球和切球。尽情发挥想象力,探索Tracer的更多有趣应用吧! Tracer基于现有的开源项目,能够实现与Phyphox的集成,支持用户使用Micropython和Arduino进行编程。用户也可以使用乐鑫ESP-IDF工具对其进行大程度的定制。Tracer是一个基于ESP32创建的开源嵌入式项目。Tracer使用了多种ESP32软件库,使开发者们能够深入了解开发运动追踪器时所需的必要处理和算法。Tracer具有强大的IMU和ToF,可用于感知周围的环境,它还支持Wi-Fi和BluetoothLE连接。 主要功能 使用LSM6DSL实时跟踪物体 VL53L0XToF传感器用于手势控制和测距 使用尼龙搭扣带即可将该装置固定在各种物体上 使用TP4065的板载锂离子电池充电 电池寿命:支持通过BluetoothLE以10Hz连续传输3小时 BluetoothLE传输距离15m(无遮挡,网球场测试) MapleEyeESP32-S3是一款基于乐鑫ESP32-S3和ESP-WHO开发的小型AI开发板。AnalogLamb是一家成立于2016年的网店,主营开源硬件和创新电子产品。AnalogLamb的MapleEyeESP32-S3是一款基于乐鑫ESP32-S3(双核XtensaLX7微控制器)和ESP-WHO(人脸识别开发框架)打造,并且支持Wi-Fi和蓝牙的AI开发板。 ESP32-S3主频高达240MHz,内置512KBSRAM,集成了2.4GHzWi-Fi和Bluetooth5(LE),并支持远距离模式(LongRange)。芯片拥有更大容量的高速OctalSPIflash和片外RAM,支持用户配置数据缓存与指令缓存。它还具有45个可编程GPIO和丰富的外设接口。 ESP-WHO是乐鑫为AIoT应用推出的人脸检测与识别开发框架。将ESP-WHO与乐鑫自己的ESP-EYE、经亚马逊FreeRTOS认证的ESP-WROVER-KIT或其他ESP32开发板一起使用,只需额外添加一些外设(如摄像头和屏幕),就可以轻松构建完整的AIoT解决方案。MapleEyeESP32-S3就是这样诞生的。 MapleEyeESP32-S3拥有一个200万像素摄像头、两个LCD和一个麦克风,能够实现图像识别和音频处理,并支持通过Wi-Fi进行图像传输,使用MicroUSB端口进行调试。它还具有充足的存储空间,包含8MB八进制PSRAM和一个8MB的flash。 MapleEyeESP32-S3规格 与乐鑫ESP32-S3-EYE兼容 无线模组:ESP32-S3-WROOM-1模组搭载ESP32-S3双核XtensaLX7处理器,频率高达240MHz,集成了用于AI加速的向量指令,拥有512KBSRAM,8MBPSRAM和8MBOctalSPIflash 存储:MicroSD卡接口 显示器:2个1.3英寸TFTLCD,可通过开关进行选择 摄像头:200万像素OV2640 音频:用于VAD(语音活动检测)和ASR(自动语音识别)的数字麦克风 USB:1个MicroUSB,用于供电和调试 传感器:3轴加速器 其他:4个按钮 供电:通过MicroUSB端口的5V电压,或电池连接器和充电器IC
查看详情 查看详情
26
2022-05

乐鑫wifi模块代理商智能家居彩屏HMI人机界面

发布时间: : 2022-05--26
乐鑫wifi模块代理商智能家居彩屏HMI人机界面,目前智能家居所应用的物联网设备种类越来越多,数据交互存储都是在云端,用户都是通过手机APP进行配网,没有专门的网关设备进行管理,不仅配网步骤繁琐,还有一个主要的因素是实时性不高,断网后更是无法应用。面对这一堆的问题,乐鑫wifi模块代理商就提出了基于5G和Wi-Fi6的智能家居中心的解决方案,方案不仅应用了5G和Wi-Fi6低延时、高速率特性,还保留了传统的WAN接口,用户可以5G、Wi-Fi、WAN之间自动无缝切换。同时应用乐鑫wifi模块代理商ESP32AI语音,让方案不仅支持本地化一键自动配网,还可以用你赋有磁性或是甜美的声音就能让家庭应用变的智能起来。 此方案可以基于本地化部署模式,支持更多的定制化环境,同时还增加了很多云产品所不具备的功能和集成。另外方案的应用还非常具有成本效益和确定性的扩展方式。如新接入一个扩展设备增加的成本很低,因为是本地化部署,客户以及用户都不需要为新增的设备做额外的费用支付。 彩屏HMI人机界面基于乐鑫wifi模块代理商ESP32 WIFI/蓝牙二合一双核CPU低功耗主控直接驱动彩屏的soc芯片,主频高240M,可以驱动SPI、MCU接口LCD彩屏、摄像头、TP等,同时可搭载自主开发的 GUI 平台固件,支持图形拖拽式编程以帮助用户完成自定义的控制平台的开发。 彩屏HMI方案可扩展功能强大,开发者可通过开发板两边的扩展接口进行按键、语音、摄像头等功能的开发调试,让开发者尽情发挥想象力进行二次开发的同时,还极大缩短用户的开发周期。 乐鑫wifi模块代理商基于ESP32的面向可视化触摸屏幕的开发板,板卡搭载自主开发的 GUI 平台固件,支持图形拖拽式编程以帮助用户完成自定义的控制平台的开发。开发者还可以通过对开发板两边的扩展接口进行按键、语音、摄像头等功能的开发调试,极大缩短用户的开发周期。方案常被应用于86盒温控器、带屏网关、热水器、烤箱等智能家居和智能家电领域。
查看详情 查看详情
25
2022-05

乐鑫WiFi6到底比WiFi5强多少AI离线语音成为智能中控标配

发布时间: : 2022-05--25
乐鑫WiFi6到底比WiFi5强多少AI离线语音成为智能中控标配 一:更高的传输速率 1.WiFi6大的特点就是速度快。相比Wi-Fi5的高速率3.5 Gbps,Wi-Fi 6采用是更高阶的调制编码方案1024-QAM,使其大连接速率提升至9.6Gbps。 2.乐鑫WiFi6大的提升不是提高单个设备的速度,而是在大量设备连接时改善网络。WiFi6引入了一些新技术,它允许路由器一次与更多的设备通信。即使越来越多的设备开始需要数据,也能保持强大的连接能力。 二:更多设备的接入且能加快每台设备的速度和容量 1.乐鑫WiFi6的“6”还体现在了高密度接入。多设备同时使用还能保持高速网速:能让接入几十台的网速和只接一台的网速保持一致。 2、允许同一时间多终端共享信道:简单来说,以前WiFi5是一条车道多部车,WiFi6是一车道变多车道,数十台设备齐头并进共享网络。 三:降低终端设备的电池消耗 1.WiFi6中的另一项新技术TWT允许AP与终端之间协商通信,减少了保持传输和搜索信号所需的时间,终端功耗会降低30%。 2.可以统一调度无线设备休眠和接收数据的时间:允许终端设备在不进行数据传输时进入休眠状态,从而可节省高达7倍的电池功耗。 四:低时延 相比WiFi5,乐鑫WiFi6网络带宽提升4倍,并发用户数提升4倍,网络时延从平均30ms降低至20ms。无线接入点(AP)能同时处理多达12个的wifi流。 五:抗干扰能力 无线之间的干扰无处不在,而干扰主要来自相邻频段的无线电波叠加和同频干扰。WiFi6提出了一种信道空间复用技术,大大解决了此前由于信号的交叉覆盖而引起的干扰,理论上能彻底解决普通家庭的信号覆盖问题。 AI离线语音或将成为智能中控设备智能升级标配,随着“天猫精灵”、“小度”、“小米”、“华为”等品牌智能音箱的市场推广和市场普及,用户对语音识别控制技术已经有了一定的认知基础。语音控制方式因为简单、自然、高度符合人类的交互习惯,已经越来越受到用户的青睐,因此语音控制可能是未来几乎所有物联网产品的一种标配,这也是物联网发展的大趋势。 但是:这些都是在线语音范畴,由于过度依赖网络,信号稍微不稳定,话说出去半天没有回应,想要砸掉天猫精灵的事情也时有发生,另外限制了小厂商的发展,因为小厂商的实力不允许他们增加成本配备人手开发出所需要的场景应用语音;还有一个关健问题,那就是对于大部分中老年和小孩来说是一种使用障碍,装APP,各种信号配对,这是一件对老人和孩子操作非常困难的事情。 所以:AI离线语音是可以完美解决以上缺陷,目前离线语音其正确识别率、抗噪能力、语音指令词条数量、响应速度、功耗、体积、成本等等,都已经有了质的突破,可以快速让很多做传统电子电器产品的厂商实现对他们的产品低成本快速智能化升级。 离线语音识别方案完全不依赖无线网络,不用安装APP,不需要手机,即插即用,会说普通话就能控制,极其方便,而且离线语音识别速度非常快,没有任何迟钝的感觉,这样的体验感在5G技术完全普及之前,远远超过了在线语音识别方案。 乐鑫推出了特小尺寸的AI离线语音模块,串口传输,便可与产品的主MCU通讯,目前单麦支持100条语音命令,支持唤醒词、命令词、回复播报语自定义;双麦支持150条语音命令词。模块支持双语命令词识别,内嵌智能降噪算法,语音识别距离可支持5M远讲,还有大家关心的响应速度,模块是在你话音刚落下,命令可能也已经完成了,不足一秒的时间,完全可以忽略。 AI离线语音模块可快速应用于各类智能小家电,86 盒,智能开关、温控器、益智玩具,灯具等需要实现语音操控的产品。应用离线语音 AI 模块赋能设备的同时,还可以搭载HMI彩屏方案将语音技术可视化,从而大幅缩短家电、智能家居厂商智能产品的研发周期。 AI离线语音或将成为智能中控设备智能升级标配,乐鑫也致力于为传统电子电器制造厂商提供低成本、无风险、快速实现智能化产品升级的一站式IOT语音入口解决方案。
查看详情 查看详情
上一页
1
2
...
74

地址:深圳市宝安区西乡街道麻布社区宝安互联网产业基地A区6栋7栋7706

邮箱:Sales@ferry-semi. com

版权所有©2020  深圳市飞睿科技有限公司  粤ICP备2020098907号    飞睿科技微波雷达wifi模块网站地图