这是描述信息
兆易创新GD32-GigaDevice-兆易创新代理

兆易创新GD32F307VGT6-GD32 ARM Cortex-M4 Microcontroller

兆易创新GD32F307VGT6-GD32 ARM Cortex-M4 Microcontroller GigaDevice Semiconductor Inc. GD32F307xx ARM® Cortex®-M4 32-bit MCU Datasheet General description The GD32F307xx device belongs to the mainstream line of GD32 MCU Family. It is a new 32-bit general-purpose microcontroller based on the ARM® Cortex®-M4 RISC core with best cost-performance ratio in terms of enhanced processing capacity, reduced power consumption and peripheral set. The Cortex®-M4 core features implements a full set of DSP instructions to address digital signal control markets that demand an efficient, easy-to-use blend of control and signal processing capabilities. It also provides a Memory Protection Unit (MPU) and powerful trace technology for enhanced application security and advanced debug support. The GD32F307xx device incorporates the ARM® Cortex®-M4 32-bit processor core operating at 120 MHz frequency with Flash accesses zero wait states to obtain maximum efficiency. It provides up to 1024 KB on-chip Flash memory and 96 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer up to two 12-bit 2.6 MSPS ADCs, two 12-bit DACs, up to ten general 16-bit timers, two 16-bit PWM advanced timers, and two 16-bit basic timers, as well as standard and advanced communication interfaces: up to three SPIs, two I2Cs, three USARTs and two UARTs, two I2Ss, two CANs, a USBFS and an ENET. The device operates from a 2.6 to 3.6 V power supply and available in –40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications. The above features make GD32F307xx devices suitable for a wide range of interconnection and advanced applications, especially in areas such as industrial control, consumer and handheld equipment, communication networks, embedded modules, human machine interface, security and alarm systems, graphic display, automotive navigation, IoT and so on. Device information Table 2-1. GD32F307xx devices features and peripheral list   Part Number GD32F307xx   RC RE RG VC VE VG ZC ZE ZG Flash Code area (KB)   256   256   256   256   256   256   256   256   256   Data area (KB)   0   256   768   0   256   768   0   256   768   Total (KB) 256 512 1024 256 512 1024 256 512 1024 SRAM (KB) 96 96 96 96 96 96 96 96 96 Timers General timer(16-bit) 4 (1-4) 4 (1-4) 10 (1-4,8-13) 4 (1-4) 4 (1-4) 10 (1-4,8-13) 4 (1-4) 4 (1-4) 10 (1-4,8-13)   Advanced timer(16-bit) 1 (0) 2 (0,7) 2 (0,7) 1 (0) 2 (0,7) 2 (0,7) 2 (0,7) 2 (0,7) 2 (0,7)   Basic timer(16-bit) 2 (5-6) 2 (5-6) 2 (5-6) 2 (5-6) 2 (5-6) 2 (5-6) 2 (5-6) 2 (5-6) 2 (5-6)   SysTick 1 1 1 1 1 1 1 1 1   Watchdog 2 2 2 2 2 2 2 2 2   RTC 1 1 1 1 1 1 1 1 1 Connectivity   USART 3 (0-2) 3 (0-2) 3 (0-2) 3 (0-2) 3 (0-2) 3 (0-2) 3 (0-2) 3 (0-2) 3 (0-2)     UART 2 (3-4) 2 (3-4) 2 (3-4) 2 (3-4) 2 (3-4) 2 (3-4) 2 (3-4) 2 (3-4) 2 (3-4)   I2C 2 2 2
兆易创新GD32-GigaDevice-兆易创新代理
产品描述

兆易创新GD32F307VGT6-GD32 ARM Cortex-M4 Microcontroller

GigaDevice Semiconductor Inc.
GD32F307xx
ARM® Cortex®-M4 32-bit MCU
Datasheet

General description

The GD32F307xx device belongs to the mainstream line of GD32 MCU Family. It is a new 32-bit general-purpose microcontroller based on the ARM® Cortex®-M4 RISC core with best cost-performance ratio in terms of enhanced processing capacity, reduced power consumption and peripheral set. The Cortex®-M4 core features implements a full set of DSP instructions to address digital signal control markets that demand an efficient, easy-to-use blend of control and signal processing capabilities. It also provides a Memory Protection Unit (MPU) and powerful trace technology for enhanced application security and advanced debug support.
The GD32F307xx device incorporates the ARM® Cortex®-M4 32-bit processor core operating at 120 MHz frequency with Flash accesses zero wait states to obtain maximum efficiency. It provides up to 1024 KB on-chip Flash memory and 96 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer up to two 12-bit 2.6 MSPS ADCs, two 12-bit DACs, up to ten general 16-bit timers, two 16-bit PWM advanced timers, and two 16-bit basic timers, as well as standard and advanced communication interfaces: up to three SPIs, two I2Cs, three USARTs and two UARTs, two I2Ss, two CANs, a USBFS and an ENET.
The device operates from a 2.6 to 3.6 V power supply and available in –40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications.
The above features make GD32F307xx devices suitable for a wide range of interconnection and advanced applications, especially in areas such as industrial control, consumer and handheld equipment, communication networks, embedded modules, human machine interface, security and alarm systems, graphic display, automotive navigation, IoT and so on.

Device information

Table 2-1. GD32F307xx devices features and peripheral list

 

Part Number

GD32F307xx

 

RC

RE

RG

VC

VE

VG

ZC

ZE

ZG

Flash

Code area

(KB)

 

256

 

256

 

256

 

256

 

256

 

256

 

256

 

256

 

256

 

Data area

(KB)

 

0

 

256

 

768

 

0

 

256

 

768

 

0

 

256

 

768

 

Total (KB)

256

512

1024

256

512

1024

256

512

1024

SRAM (KB)

96

96

96

96

96

96

96

96

96

Timers

General

timer(16-bit)

4

(1-4)

4

(1-4)

10

(1-4,8-13)

4

(1-4)

4

(1-4)

10

(1-4,8-13)

4

(1-4)

4

(1-4)

10

(1-4,8-13)

 

Advanced

timer(16-bit)

1

(0)

2

(0,7)

2

(0,7)

1

(0)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

 

Basic

timer(16-bit)

2

(5-6)

2

(5-6)

2

(5-6)

2

(5-6)

2

(5-6)

2

(5-6)

2

(5-6)

2

(5-6)

2

(5-6)

 

SysTick

1

1

1

1

1

1

1

1

1

 

Watchdog

2

2

2

2

2

2

2

2

2

 

RTC

1

1

1

1

1

1

1

1

1

Connectivity

 

USART

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

3

(0-2)

 

 

UART

2

(3-4)

2

(3-4)

2

(3-4)

2

(3-4)

2

(3-4)

2

(3-4)

2

(3-4)

2

(3-4)

2

(3-4)

 

I2C

2

2

2

2

2

2

2

2

2

 

 

SPI/I2S

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

 

ENET

1

1

1

1

1

1

1

1

1

 

CAN

2

2

2

2

2

2

2

2

2

 

USBFS

1

1

1

1

1

1

1

1

1

GPIO

51

51

51

80

80

80

112

112

112

EXMC

0

0

0

1

1

1

1

1

1

EXTI

16

16

16

16

16

16

16

16

16

ADC Unit (CHs)

2(16)

2(16)

2(16)

2(16)

2(16)

2(16)

2(21)

2(21)

2(21)

DAC

2

2

2

2

2

2

2

2

2

Package

LQFP64

LQFP100

LQFP144

Memory map

Table 2-2. GD32F307xx memory map

Pre-defined

Regions

 

Bus

 

Address

 

Peripherals

External device

 

 

AHB3

0xA000 0000 - 0xA000 0FFF

EXMC - SWREG

 

External RAM

 

0x9000 0000 - 0x9FFF FFFF

EXMC - PC CARD

 

 

0x7000 0000 - 0x8FFF FFFF

EXMC - NAND

 

 

0x6000 0000 - 0x6FFF FFFF

EXMC - NOR/PSRAM/SRAM

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Peripheral

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AHB1

0x5000 0000 - 0x5003 FFFF

USBFS

 

 

0x4008 0000 - 0x4FFF FFFF

Reserved

 

 

0x4004 0000 - 0x4007 FFFF

Reserved

 

 

0x4002 BC00 - 0x4003 FFFF

Reserved

 

 

0x4002 B000 - 0x4002 BBFF

Reserved

 

 

0x4002 A000 - 0x4002 AFFF

Reserved

 

 

0x4002 8000 - 0x4002 9FFF

ENET

 

 

0x4002 6800 - 0x4002 7FFF

Reserved

 

 

0x4002 6400 - 0x4002 67FF

Reserved

 

 

0x4002 6000 - 0x4002 63FF

Reserved

 

 

0x4002 5000 - 0x4002 5FFF

Reserved

 

 

0x4002 4000 - 0x4002 4FFF

Reserved

 

 

0x4002 3C00 - 0x4002 3FFF

Reserved

 

 

0x4002 3800 - 0x4002 3BFF

Reserved

 

 

0x4002 3400 - 0x4002 37FF

Reserved

 

 

0x4002 3000 - 0x4002 33FF

CRC

 

 

0x4002 2C00 - 0x4002 2FFF

Reserved

 

 

0x4002 2800 - 0x4002 2BFF

Reserved

 

 

0x4002 2400 - 0x4002 27FF

Reserved

 

 

0x4002 2000 - 0x4002 23FF

FMC

 

 

0x4002 1C00 - 0x4002 1FFF

Reserved

 

 

0x4002 1800 - 0x4002 1BFF

Reserved

 

 

0x4002 1400 - 0x4002 17FF

Reserved

 

 

0x4002 1000 - 0x4002 13FF

RCU

 

 

0x4002 0C00 - 0x4002 0FFF

Reserved

 

 

0x4002 0800 - 0x4002 0BFF

Reserved

 

 

0x4002 0400 - 0x4002 07FF

DMA1

 

 

0x4002 0000 - 0x4002 03FF

DMA0

 

 

0x4001 8400 - 0x4001 FFFF

Reserved

 

 

0x4001 8000 - 0x4001 83FF

Reserved

 

 

APB2

0x4001 7C00 - 0x4001 7FFF

Reserved

 

 

0x4001 7800 - 0x4001 7BFF

Reserved

 

 

0x4001 7400 - 0x4001 77FF

Reserved

 

Pre-defined

Regions

 

Bus

 

Address

 

Peripherals

 

 

0x4001 7000 - 0x4001 73FF

Reserved

 

 

0x4001 6C00 - 0x4001 6FFF

Reserved

 

 

0x4001 6800 - 0x4001 6BFF

Reserved

 

 

0x4001 5C00 - 0x4001 67FF

Reserved

 

 

0x4001 5800 - 0x4001 5BFF

Reserved

 

 

0x4001 5400 - 0x4001 57FF

TIMER10

 

 

0x4001 5000 - 0x4001 53FF

TIMER9

 

 

0x4001 4C00 - 0x4001 4FFF

TIMER8

 

 

0x4001 4800 - 0x4001 4BFF

Reserved

 

 

0x4001 4400 - 0x4001 47FF

Reserved

 

 

0x4001 4000 - 0x4001 43FF

Reserved

 

 

0x4001 3C00 - 0x4001 3FFF

Reserved

 

 

0x4001 3800 - 0x4001 3BFF

USART0

 

 

0x4001 3400 - 0x4001 37FF

TIMER7

 

 

0x4001 3000 - 0x4001 33FF

SPI0

 

 

0x4001 2C00 - 0x4001 2FFF

TIMER0

 

 

0x4001 2800 - 0x4001 2BFF

ADC1

 

 

0x4001 2400 - 0x4001 27FF

ADC0

 

 

0x4001 2000 - 0x4001 23FF

GPIOG

 

 

0x4001 1C00 - 0x4001 1FFF

GPIOF

 

 

0x4001 1800 - 0x4001 1BFF

GPIOE

 

 

0x4001 1400 - 0x4001 17FF

GPIOD

 

 

0x4001 1000 - 0x4001 13FF

GPIOC

 

 

0x4001 0C00 - 0x4001 0FFF

GPIOB

 

 

0x4001 0800 - 0x4001 0BFF

GPIOA

 

 

0x4001 0400 - 0x4001 07FF

EXTI

 

 

0x4001 0000 - 0x4001 03FF

AFIO

 

 

 

 

 

 

 

 

 

APB1

0x4000 CC00 - 0x4000 FFFF

Reserved

 

 

0x4000 C800 - 0x4000 CBFF

CTC

 

 

0x4000 C400 - 0x4000 C7FF

Reserved

 

 

0x4000 C000 - 0x4000 C3FF

Reserved

 

 

0x4000 8000 - 0x4000 BFFF

Reserved

 

 

0x4000 7C00 - 0x4000 7FFF

Reserved

 

 

0x4000 7800 - 0x4000 7BFF

Reserved

 

 

0x4000 7400 - 0x4000 77FF

DAC

 

 

0x4000 7000 - 0x4000 73FF

PMU

 

 

0x4000 6C00 - 0x4000 6FFF

BKP

 

 

0x4000 6800 - 0x4000 6BFF

CAN1

 

 

0x4000 6400 - 0x4000 67FF

CAN0

 

 

0x4000 6000 - 0x4000 63FF

CAN SRAM 512 bytes

 

Pre-defined

Regions

 

Bus

 

Address

 

Peripherals

 

 

0x4000 5C00 - 0x4000 5FFF

Reserved

 

 

0x4000 5800 - 0x4000 5BFF

I2C1

 

 

0x4000 5400 - 0x4000 57FF

I2C0

 

 

0x4000 5000 - 0x4000 53FF

UART4

 

 

0x4000 4C00 - 0x4000 4FFF

UART3

 

 

0x4000 4800 - 0x4000 4BFF

USART2

 

 

0x4000 4400 - 0x4000 47FF

USART1

 

 

0x4000 4000 - 0x4000 43FF

Reserved

 

 

0x4000 3C00 - 0x4000 3FFF

SPI2/I2S2

 

 

0x4000 3800 - 0x4000 3BFF

SPI1/I2S1

 

 

0x4000 3400 - 0x4000 37FF

Reserved

 

 

0x4000 3000 - 0x4000 33FF

FWDGT

 

 

0x4000 2C00 - 0x4000 2FFF

WWDGT

 

 

0x4000 2800 - 0x4000 2BFF

RTC

 

 

0x4000 2400 - 0x4000 27FF

Reserved

 

 

0x4000 2000 - 0x4000 23FF

TIMER13

 

 

0x4000 1C00 - 0x4000 1FFF

TIMER12

 

 

0x4000 1800 - 0x4000 1BFF

TIMER11

 

 

0x4000 1400 - 0x4000 17FF

TIMER6

 

 

0x4000 1000 - 0x4000 13FF

TIMER5

 

 

0x4000 0C00 - 0x4000 0FFF

TIMER4

 

 

0x4000 0800 - 0x4000 0BFF

TIMER3

 

 

0x4000 0400 - 0x4000 07FF

TIMER2

 

 

0x4000 0000 - 0x4000 03FF

TIMER1

 

 

 

SRAM

 

 

 

AHB

0x2007 0000 - 0x3FFF FFFF

Reserved

 

 

0x2006 0000 - 0x2006 FFFF

Reserved

 

 

0x2003 0000 - 0x2005 FFFF

Reserved

 

 

0x2001 8000 - 0x2002 FFFF

Reserved

 

 

0x2000 0000 - 0x2001 7FFF

SRAM

 

 

 

 

 

 

 

Code

 

 

 

 

 

 

 

AHB

0x1FFF F810 - 0x1FFF FFFF

Reserved

 

 

0x1FFF F800 - 0x1FFF F80F

Option Bytes

 

 

0x1FFF F000 - 0x1FFF F7FF

 

 

Boot loader

 

 

0x1FFF C010 - 0x1FFF EFFF

 

 

 

0x1FFF C000 - 0x1FFF C00F

 

 

 

0x1FFF B000 - 0x1FFF BFFF

 

 

 

0x1FFF 7A10 - 0x1FFF AFFF

Reserved

 

 

0x1FFF 7800 - 0x1FFF 7A0F

Reserved

 

 

0x1FFF 0000 - 0x1FFF 77FF

Reserved

 

 

0x1FFE C010 - 0x1FFE FFFF

Reserved

 

 

0x1FFE C000 - 0x1FFE C00F

Reserved

 

 

Pre-defined

Regions

 

Bus

 

Address

 

Peripherals

 

 

0x1001 0000 - 0x1FFE BFFF

Reserved

0x1000 0000 - 0x1000 FFFF

Reserved

0x083C 0000 - 0x0FFF FFFF

Reserved

0x0830 0000 - 0x083B FFFF

Reserved

0x0810 0000 - 0x082F FFFF

Reserved

0x0800 0000 - 0x080F FFFF

Main Flash

0x0030 0000 - 0x07FF FFFF

Reserved

0x0010 0000 - 0x002F FFFF

 

Aliased to Main Flash or Boot loader

0x0002 0000 - 0x000F FFFF

0x0000 0000 - 0x0001 FFFF

 

GD32F307Zx LQFP144 pin definitions

Table 2-3. GD32F307Zx LQFP144 pin definitions

 

 

Pin Name

 

 

Pins

 

 

Pin Type(1)

 

 

I/O Level(2)

 

 

Functions description

 

PE2

 

1

 

I/O

 

5VT

Default: PE2

Alternate: TRACECK, EXMC_A23

 

PE3

 

2

 

I/O

 

5VT

Default: PE3

Alternate: TRACED0, EXMC_A19

 

PE4

 

3

 

I/O

 

5VT

Default: PE4

Alternate:TRACED1, EXMC_A20

 

PE5

 

4

 

I/O

 

5VT

Default: PE5 Alternate:TRACED2, EXMC_A21

Remap: TIMER8_CH0(3)

 

PE6

 

5

 

I/O

 

5VT

Default: PE6 Alternate:TRACED3, EXMC_A22

Remap: TIMER8_CH1(3)

VBAT

6

P

 

Default: VBAT

PC13- TAMPER- RTC

 

7

 

I/O

 

 

Default: PC13

Alternate: TAMPER-RTC

PC14- OSC32IN

 

8

 

I/O

 

Default: PC14 Alternate: OSC32IN

PC15-

OSC32OUT

 

9

 

I/O

 

Default: PC15 Alternate: OSC32OUT

 

PF0

 

10

 

I/O

 

5VT

Default: PF0 Alternate: EXMC_A0

Remap: CTC_SYNC

 

PF1

 

11

 

I/O

 

5VT

Default: PF1 Alternate: EXMC_A1

 

PF2

 

12

 

I/O

 

5VT

Default: PF2

Alternate: EXMC_A2

 

PF3

 

13

 

I/O

 

5VT

Default: PF3 Alternate: EXMC_A3

 

PF4

 

14

 

I/O

 

5VT

Default: PF4

Alternate: EXMC_A4

 

PF5

 

15

 

I/O

 

5VT

Default: PF5 Alternate: EXMC_A5

VSS_5

16

P

 

Default: VSS_5

VDD_5

17

P

 

Default: VDD_5

 

 

 

Pin Name

 

 

Pins

 

 

Pin Type(1)

 

 

I/O Level(2)

 

 

Functions description

 

 

 

 

Default: PF6

PF6

18

I/O

 

Alternate: EXMC_NIORD

 

 

 

 

Remap: TIMER9_CH0

 

 

 

 

Default: PF7

PF7

19

I/O

 

Alternate: EXMC_NREG

 

 

 

 

Remap: TIMER10_CH0(3)

 

 

 

 

Default: PF8

PF8

20

I/O

 

Alternate: EXMC_NIOWR

 

 

 

 

Remap: TIMER12_CH0(3)

 

 

 

 

Default: PF9

PF9

21

I/O

 

Alternate: EXMC_CD

 

 

 

 

Remap: TIMER13_CH0(3)

 

PF10

 

22

 

I/O

 

Default: PF10

Alternate: EXMC_INTR

 

OSCIN

 

23

 

I

 

Default: OSCIN

Remap: PD0

 

OSCOUT

 

24

 

O

 

Default: OSCOUT

Remap: PD1

NRST

25

I/O

 

Default: NRST

 

PC0

 

26

 

I/O

 

Default: PC0

Alternate: ADC01_IN10

 

PC1

 

27

 

I/O

 

Default: PC1

Alternate: ADC01_IN11, ENET_MDC

 

PC2

 

28

 

I/O

 

Default: PC2

Alternate: ADC01_IN12, ENET_MII_TXD2

 

PC3

 

29

 

I/O

 

Default: PC3

Alternate: ADC01_IN13, ENET_MII_TX_CLK

VSSA

30

P

 

Default: VSSA

VREF-

31

P

 

Default: VREF-

VREF+

32

P

 

Default: VREF+

VDDA

33

P

 

Default: VDDA

 

 

 

 

Default: PA0

PA0-WKUP

34

I/O

 

Alternate: WKUP, USART1_CTS, ADC01_IN0,

TIMER1_CH0, TIMER1_ETI, TIMER4_CH0,

 

 

 

 

TIMER7_ETI, ENET_MII_CRS

 

 

 

 

Default: PA1

PA1

35

I/O

 

Alternate: USART1_RTS, ADC01_IN1, TIMER1_CH1,

TIMER4_CH1, ENET_MII_RX_CLK,

 

 

 

 

ENET_RMII_REF_CLK

 

 

 

 

Default: PA2

PA2

36

I/O

 

Alternate: USART1_TX, ADC01_IN2, TIMER1_CH2,

 

 

 

 

TIMER4_CH2, TIMER8_CH0(3), ENET_MDIO,

 

 

 

Pin Name

 

 

Pins

 

 

Pin Type(1)

 

 

I/O Level(2)

 

 

Functions description

 

 

 

 

SPI0_IO2

 

 

 

 

Default: PA3

PA3

37

I/O

 

Alternate: USART1_RX, ADC01_IN3, TIMER1_CH3,

TIMER4_CH3, TIMER8_CH1(3), ENET_MII_COL,

 

 

 

 

SPI0_IO3

VSS_4

38

P

 

Default: VSS_4

VDD_4

39

P

 

Default: VDD_4

 

 

 

 

Default: PA4

PA4

40

I/O

 

Alternate: SPI0_NSS, USART1_CK, ADC01_IN4,

DAC_OUT0

 

 

 

 

Remap:SPI2_NSS, I2S2_WS

 

PA5

 

41

 

I/O

 

Default: PA5

Alternate: SPI0_SCK, ADC01_IN5, DAC_OUT1

 

 

 

 

Default: PA6

PA6

42

I/O

 

Alternate: SPI0_MISO, ADC01_IN6, TIMER2_CH0,

TIMER7_BRKIN, TIMER12_CH0(3)

 

 

 

 

Remap: TIMER0_BRKIN

 

 

 

 

Default: PA7

 

 

 

 

Alternate: SPI0_MOSI, ADC01_IN7, TIMER2_CH1,

PA7

43

I/O

 

TIMER7_CH0_ON, TIMER13_CH0(3),

 

 

 

 

ENET_MII_RX_DV, ENET_RMII_CRS_DV

 

 

 

 

Remap: TIMER0_CH0_ON

 

 

 

 

Default: PC4

PC4

44

I/O

 

Alternate: ADC01_IN14, ENET_MII_RXD0,

 

 

 

 

ENET_RMII_RXD0

 

 

 

 

Default: PC5

PC5

45

I/O

 

Alternate: ADC01_IN15, ENET_MII_RXD1,

 

 

 

 

ENET_RMII_RXD1

 

 

 

 

Default: PB0

PB0

46

I/O

 

Alternate: ADC01_IN8, TIMER2_CH2,

TIMER7_CH1_ON, ENET_MII_RXD2

 

 

 

 

Remap: TIMER0_CH1_ON

 

 

 

 

Default: PB1

PB1

47

I/O

 

Alternate: ADC01_IN9, TIMER2_CH3,

TIMER7_CH2_ON, ENET_MII_RXD3

 

 

 

 

Remap: TIMER0_CH2_ON

PB2

48

I/O

5VT

Default: PB2, BOOT1

 

PF11

 

49

 

I/O

 

5VT

Default: PF11

Alternate: EXMC_NIOS16

 

PF12

 

50

 

I/O

 

5VT

Default: PF12

Alternate: EXMC_A6

VSS_6

51

P

 

Default: VSS_6

 

 

 

Pin Name

 

 

Pins

 

 

Pin Type(1)

 

 

I/O Level(2)

 

 

Functions description

VDD_6

52

P

 

Default: VDD_6

 

PF13

 

53

 

I/O

 

5VT

Default: PF13

Alternate: EXMC_A7

 

PF14

 

54

 

I/O

 

5VT

Default: PF14 Alternate: EXMC_A8

 

PF15

 

55

 

I/O

 

5VT

Default: PF15

Alternate: EXMC_A9

 

PG0

 

56

 

I/O

 

5VT

Default: PG0 Alternate: EXMC_A10

 

PG1

 

57

 

I/O

 

5VT

Default: PG1

Alternate: EXMC_A11

 

PE7

 

58

 

I/O

 

5VT

Default: PE7 Alternate: EXMC_D4

Remap: TIMER0_ETI

 

PE8

 

59

 

I/O

 

5VT

Default: PE8 Alternate: EXMC_D5

Remap: TIMER0_CH0_ON

 

PE9

 

60

 

I/O

 

5VT

Default: PE9

Alternate: EXMC_D6 Remap: TIMER0_CH0

VSS_7

61

P

 

Default: VSS_7

VDD_7

62

P

 

Default: VDD_7

 

PE10

 

63

 

I/O

 

5VT

Default: PE10 Alternate: EXMC_D7

Remap: TIMER0_CH1_ON

 

PE11

 

64

 

I/O

 

5VT

Default: PE11 Alternate: EXMC_D8

Remap: TIMER0_CH1

 

PE12

 

65

 

I/O

 

5VT

Default: PE12 Alternate: EXMC_D9

Remap: TIMER0_CH2_ON

 

PE13

 

66

 

I/O

 

5VT

Default: PE13

Alternate: EXMC_D10 Remap: TIMER0_CH2

 

PE14

 

67

 

I/O

 

5VT

Default: PE14

Alternate: EXMC_D11 Remap: TIMER0_CH3

 

PE15

 

68

 

I/O

 

5VT

Default: PE15 Alternate: EXMC_D12

Remap: TIMER0_BRKIN

 

PB10

 

69

 

I/O

 

5VT

Default: PB10

Alternate: I2C1_SCL, USART2_TX, ENET_MII_RX_ER

 

 

 

Pin Name

 

 

Pins

 

 

Pin Type(1)

 

 

I/O Level(2)

 

 

Functions description

 

 

 

 

Remap: TIMER1_CH2

 

 

PB11

 

 

70

 

 

I/O

 

 

5VT

Default: PB11

Alternate: I2C1_SDA, USART2_RX, ENET_MII_TX_EN, ENET_RMII_TX_EN

Remap: TIMER1_CH3

VSS_1

71

P

 

Default: VSS_1

VDD_1

72

P

 

Default: VDD_1

 

 

PB12

 

 

73

 

 

I/O

 

 

5VT

Default: PB12

Alternate: SPI1_NSS, I2C1_SMBA, USART2_CK, TIMER0_BRKIN, I2S1_WS, CAN1_RX,

ENET_MII_TXD0, ENET_RMII_TXD0

 

 

PB13

 

 

74

 

 

I/O

 

 

5VT

Default: PB13

Alternate: SPI1_SCK, USART2_CTS, TIMER0_CH0_ON, I2S1_CK, CAN1_TX, ENET_MII_TXD1, ENET_RMII_TXD1

 

PB14

 

75

 

I/O

 

5VT

Default: PB14

Alternate: SPI1_MISO, USART2_RTS, TIMER0_CH1_ON, TIMER11_CH0(3)

 

PB15

 

76

 

I/O

 

5VT

Default: PB15

Alternate: SPI1_MOSI, TIMER0_CH2_ON, I2S1_SD, TIMER11_CH1(3)

 

 

PD8

 

 

77

 

 

I/O

 

 

5VT

Default: PD8 Alternate: EXMC_D13

Remap: USART2_TX, ENET_MII_RX_DV,

ENET_RMII_CRS_DV

 

 

PD9

 

 

78

 

 

I/O

 

 

5VT

Default: PD9 Alternate: EXMC_D14

Remap: USART2_RX, ENET_MII_RXD0,

ENET_RMII_RXD0

 

 

PD10

 

 

79

 

 

I/O

 

 

5VT

Default: PD10 Alternate: EXMC_D15

Remap: USART2_CK, ENET_MII_RXD1,

ENET_RMII_RXD1

 

PD11

 

80

 

I/O

 

5VT

Default: PD11 Alternate: EXMC_A16

Remap: USART2_CTS, ENET_MII_RXD2

 

 

PD12

 

 

81

 

 

I/O

 

 

5VT

Default: PD12 Alternate: EXMC_A17

Remap: TIMER3_CH0, USART2_RTS,

ENET_MII_RXD3

 

PD13

 

82

 

I/O

 

5VT

Default: PD13 Alternate: EXMC_A18

Remap: TIMER3_CH1

 

 

 

Pin Name

 

 

Pins

 

 

Pin Type(1)

 

 

I/O Level(2)

 

 

Functions description

VSS_8

83

P

 

Default: VSS_8

VDD_8

84

P

 

Default: VDD_8

 

PD14

 

85

 

I/O

 

5VT

Default: PD14

Alternate: EXMC_D0 Remap: TIMER3_CH2

 

PD15

 

86

 

I/O

 

5VT

Default: PD15 Alternate: EXMC_D1

Remap: TIMER3_CH3, CTC_SYNC

 

PG2

 

87

 

I/O

 

5VT

Default: PG2 Alternate: EXMC_A12

 

PG3

 

88

 

I/O

 

5VT

Default: PG3

Alternate: EXMC_A13

 

PG4

 

89

 

I/O

 

5VT

Default: PG4 Alternate: EXMC_A14

 

PG5

 

90

 

I/O

 

5VT

Default: PG5

Alternate: EXMC_A15

 

PG6

 

91

 

I/O

 

5VT

Default: PG6 Alternate: EXMC_INT1

 

PG7

 

92

 

I/O

 

5VT

Default: PG7

Alternate: EXMC_INT2

PG8

93

I/O

5VT

Default: PG8

VSS_9

94

P

 

Default: VSS_9

VDD_9

95

P

 

Default: VDD_9

 

PC6

 

96

 

I/O

 

5VT

Default: PC6

Alternate: I2S1_MCK, TIMER7_CH0 Remap: TIMER2_CH0

 

PC7

 

97

 

I/O

 

5VT

Default: PC7

Alternate: I2S2_MCK, TIMER7_CH1 Remap: TIMER2_CH1

 

PC8

 

98

 

I/O

 

5VT

Default: PC8

Alternate: TIMER7_CH2 Remap: TIMER2_CH2

 

PC9

 

99

 

I/O

 

5VT

Default: PC9

Alternate: TIMER7_CH3 Remap: TIMER2_CH3

 

PA8

 

100

 

I/O

 

5VT

Default: PA8

Alternate: USART0_CK, TIMER0_CH0, CK_OUT0, USBFS_SOF, CTC_SYNC

 

PA9

 

101

 

I/O

 

5VT

Default: PA9

Alternate: USART0_TX, TIMER0_CH1, USBFS_VBUS

PA10

102

I/O

5VT

Default: PA10

 

 

 

Pin Name

 

 

Pins

 

 

Pin Type(1)

 

 

I/O Level(2)

 

 

Functions description

 

 

 

 

Alternate: USART0_RX, TIMER0_CH2, USBFS_ID

 

PA11

 

103

 

I/O

 

5VT

Default: PA11

Alternate: USART0_CTS, CAN0_RX, USBFS_DM, TIMER0_CH3

 

PA12

 

104

 

I/O

 

5VT

Default: PA12

Alternate: USART0_RTS, USBFS_DP, CAN0_TX, TIMER0_ETI

 

PA13

 

105

 

I/O

 

5VT

Default: JTMS, SWDIO

Remap: PA13

NC

106

-

-

-

VSS_2

107

P

 

Default: VSS_2

VDD_2

108

P

 

Default: VDD_2

 

PA14

 

109

 

I/O

 

5VT

Default: JTCK, SWCLK

Remap: PA14

 

 

PA15

 

 

110

 

 

I/O

 

 

5VT

Default: JTDI

Alternate: SPI2_NSS, I2S2_WS

Remap: TIMER1_CH0, TIMER1_ETI, PA15, SPI0_NSS

 

PC10

 

111

 

I/O

 

5VT

Default: PC10 Alternate: UART3_TX

Remap: USART2_TX, SPI2_SCK, I2S2_CK

 

PC11

 

112

 

I/O

 

5VT

Default: PC11 Alternate: UART3_RX

Remap: USART2_RX, SPI2_MISO

 

PC12

 

113

 

I/O

 

5VT

Default: PC12 Alternate: UART4_TX

Remap: USART2_CK, SPI2_MOSI, I2S2_SD

 

PD0

 

114

 

I/O

 

5VT

Default: PD0 Alternate: EXMC_D2

Remap: CAN0_RX, OSCIN

 

PD1

 

115

 

I/O

 

5VT

Default: PD1 Alternate: EXMC_D3

Remap: CAN0_TX, OSCOUT

 

PD2

 

116

 

I/O

 

5VT

Default: PD2

Alternate: TIMER2_ETI, UART4_RX

 

PD3

 

117

 

I/O

 

5VT

Default: PD3 Alternate: EXMC_CLK

Remap: USART1_CTS

 

PD4

 

118

 

I/O

 

5VT

Default: PD4 Alternate: EXMC_NOE

Remap: USART1_RTS

 

PD5

 

119

 

I/O

 

5VT

Default: PD5

Alternate: EXMC_NWE

 

 

 

Pin Name

 

 

Pins

 

 

Pin Type(1)

 

 

I/O Level(2)

 

 

Functions description

 

 

 

 

Remap: USART1_TX

VSS_10

120

P

 

Default: VSS_10

VDD_10

121

P

 

Default: VDD_10

 

PD6

 

122

 

I/O

 

5VT

Default: PD6

Alternate: EXMC_NWAIT Remap: USART1_RX

 

PD7

 

123

 

I/O

 

5VT

Default: PD7

Alternate: EXMC_NE0, EXMC_NCE1 Remap: USART1_CK

 

PG9

 

124

 

I/O

 

5VT

Default: PG9

Alternate: EXMC_NE1, EXMC_NCE2

 

PG10

 

125

 

I/O

 

5VT

Default: PG10

Alternate: EXMC_NCE3_0, EXMC_NE2

 

PG11

 

126

 

I/O

 

5VT

Default: PG11

Alternate: EXMC_NCE3_1

 

PG12

 

127

 

I/O

 

5VT

Default: PG12

Alternate: EXMC_NE3

 

PG13

 

128

 

I/O

 

5VT

Default: PG13

Alternate: EXMC_A24

 

PG14

 

129

 

I/O

 

5VT

Default: PG14

Alternate: EXMC_A25

VSS_11

130

P

 

Default: VSS_11

VDD_11

131

P

 

Default: VDD_11

PG15

132

I/O

5VT

Default: PG15

 

 

PB3

 

 

133

 

 

I/O

 

 

5VT

Default: JTDO Alternate:SPI2_SCK, I2S2_CK

Remap: PB3, TRACESWO, TIMER1_CH1,

SPI0_SCK

 

PB4

 

134

 

I/O

 

5VT

Default: NJTRST Alternate: SPI2_MISO

Remap: TIMER2_CH0, PB4, SPI0_MISO

 

 

PB5

 

 

135

 

 

I/O

 

Default: PB5

Alternate: I2C0_SMBA, SPI2_MOSI, I2S2_SD, ENET_MII_PPS_OUT, ENET_RMII_PPS_OUT

Remap: TIMER2_CH1, SPI0_MOSI, CAN1_RX

 

PB6

 

136

 

I/O

 

5VT

Default: PB6

Alternate: I2C0_SCL, TIMER3_CH0 Remap: USART0_TX, CAN1_TX, SPI0_IO2

 

PB7

 

137

 

I/O

 

5VT

Default: PB7

Alternate: I2C0_SDA , TIMER3_CH1, EXMC_NADV Remap: USART0_RX, SPI0_IO3

BOOT0

138

I

 

Default: BOOT0

 

 

 

Pin Name

 

 

Pins

 

 

Pin Type(1)

 

 

I/O Level(2)

 

 

Functions description

 

 

PB8

 

 

139

 

 

I/O

 

 

5VT

Default: PB8

Alternate: TIMER3_CH2, TIMER9_CH0(3), ENET_MII_TXD3

Remap: I2C0_SCL, CAN0_RX

 

PB9

 

140

 

I/O

 

5VT

Default: PB9

Alternate: TIMER3_CH3, TIMER10_CH0(3) Remap: I2C0_SDA, CAN0_TX

 

PE0

 

141

 

I/O

 

5VT

Default: PE0

Alternate: TIMER3_ETI, EXMC_NBL0

 

PE1

 

142

 

I/O

 

5VT

Default: PE1

Alternate: EXMC_NBL1

VSS_3

143

P

 

Default: VSS_3

VDD_3

144

P

 

Default: VDD_3

Notes:
(1)Type: I = input, O = output, P = power. 
(2)I/O Level: 5VT = 5 V tolerant.
(3)Functions are available in GD32F307ZG devices.

3.1.ARM® Cortex®-M4 core

The ARM® Cortex®-M4 processor is a high performance embedded processor with DSP instructions which allow efficient signal processing and complex algorithm execution. It brings an efficient, easy-to-use blend of control and signal processing capabilities to meet the digital signal control markets demand. The processor is highly configurable enabling a wide range of implementations from those requiring floating point operations, memory protection and powerful trace technology to cost sensitive devices requiring minimal area, while delivering outstanding computational performance and an advanced system response to interrupts.
32-bit ARM® Cortex®-M4 processor core
Up to 120 MHz operation frequency
Single-cycle multiplication and hardware divider
Integrated DSP instructions
Integrated Nested Vectored Interrupt Controller (NVIC)
24-bit SysTick timer

The Cortex®-M4 processor is based on the ARMv7-M architecture and supports both Thumb and Thumb-2 instruction sets. Some system peripherals listed below are also provided by Cortex®-M4:
Internal Bus Matrix connected with ICode bus, DCode bus, System bus, Private Peripheral Bus (PPB) and debug accesses (AHB-AP)
Nested Vectored Interrupt Controller (NVIC)
Flash Patch and Breakpoint (FPB)
Data Watchpoint and Trace (DWT)
Instrument Trace Macrocell (ITM)
Memory Protection Unit (MPU)
Serial Wire JTAG Debug Port (SWJ-DP)
Trace Port Interface Unit (TPIU)
Floating Point Unit (FPU)


3.2.On-chip memory

Up to 1024 Kbytes of Flash memory, including code Flash and data Flash
96 KB of SRAM

The ARM® Cortex®-M4 processor is structured in Harvard architecture which can use separate buses to fetch instructions and load/store data. 1024 Kbytes of inner flash at most, which includes code Flash that available for storing programs and data, and accessed (R/W) at CPU clock speed with zero wait states. An extra data Flash is also included for storing data mainly. Table 2-2. GD32F307xx memory map shows the memory of the GD32F307xx

series of devices, including Flash, SRAM, peripheral, and other pre-defined regions.


Clock, reset and supply management

Internal 8 MHz factory-trimmed RC and external 4 to 32 MHz crystal oscillator
Internal 48 MHz RC oscillator
Internal 40 KHz RC calibrated oscillator and external 32.768 KHz crystal oscillator
2.6 to 3.6 V application supply and I/Os
Supply Supervisor: POR (Power On Reset), PDR (Power Down Reset), and low voltage detector (LVD)
The Clock Control Unit (CCU) provides a range of oscillator and clock functions. These include internal RC oscillator and external crystal oscillator, high speed and low speed two types. Several prescalers allow the frequency configuration of the AHB and two APB domains. The maximum frequency of the two AHB domains are 120 MHz The maximum frequency of the two APB domains including APB1 is 60 MHz and APB2 is 120 MHz See Figure 2-5 GD32F307xx clock tree for details on the clock tree.
The Reset Control Unit (RCU) controls three kinds of reset: system reset resets the processor core and peripheral IP components. Power-on reset (POR) and power-down reset (PDR) are always active, and ensures proper operation starting from/down to 2.6 V. The device remains in reset mode when VDD is below a specified threshold. The embedded low voltage detector (LVD) monitors the power supply, compares it to the voltage threshold and generates an interrupt as a warning message for leading the MCU into security.
Power supply schemes:
VDD range: 2.6 to 3.6 V, external power supply for I/Os and the internal regulator. Provided externally through VDD pins.
VSSA, VDDA range: 2.6 to 3.6 V, external analog power supplies for ADC, reset blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.
VBAT range: 1.8 to 3.6 V, power supply for RTC, external clock 32 KHz oscillator and backup registers (through power switch) when VDD is not present.

Boot modes

At startup, boot pins are used to select one of three boot options:
Boot from main flash memory (default)
Boot from system memory
Boot from on-chip SRAM

The boot loader is located in the internal boot ROM memory (system memory). It is used to reprogram the Flash memory by using USART0 (PA9 and PA10), USART1 (PD5 and PD6) and USBFS (PA9, PA11 and PA12) is also available for boot functions. It also can be used to transfer and update the Flash memory code, the data and the vector table sections. In default

condition, boot from bank0 of Flash memory is selected. It also supports to boot from bank1 of Flash memory by setting a bit in option bytes.

Power saving modes

The MCU supports three kinds of power saving modes to achieve even lower power consumption. They are sleep mode, deep-sleep mode and standby mode. These operating modes reduce the power consumption and allow the application to achieve the best balance between the CPU operating time, speed and power consumption.
Sleep mode
In sleep mode, only the clock of CPU core is off. All peripherals continue to operate and any interrupt/event can wake up the system.
Deep-sleep mode
In deep-sleep mode, all clocks in the 1.2V domain are off, and all of the high speed crystal oscillator (IRC8M, HXTAL) and PLL are disabled. Only the contents of SRAM and registers are retained. Any interrupt or wakeup event from EXTI lines can wake up the system from the deep-sleep mode including the 16 external lines, the RTC alarm, the LVD output, the USB wakeup and ENET wakeup. When exiting the deep-sleep mode, the IRC8M is selected as the system clock.
Standby mode
In standby mode, the whole 1.2V domain is power off, the LDO is shut down, and all of IRC8M, HXTAL and PLL are disabled. The contents of SRAM and registers (except backup registers) are lost. There are four wakeup sources for the standby mode, including the external reset from NRST pin, the RTC, the FWDG reset, and the rising edge on WKUP pin.

Analog to digital converter (ADC)

12-bit SAR ADC's conversion rate is up to 2.6 MSPS
12-bit, 10-bit, 8-bit or 6-bit configurable resolution
Hardware oversampling ratio adjustable from 2 to 256x improves resolution to 16-bit
Input voltage range: VSSA to VDDA (2.6 to 3.6 V)
Temperature sensor

Up to two 12-bit 2.6 MSPS multi-channel ADCs are integrated in the device. It has a total of 18 multiplexed channels: 16 external channels, 1 channel for internal temperature sensor (VSENSE), and 1 channel for internal reference voltage (VREFINT). The input voltage range is between 2.6 V and 3.6 V. An on-chip hardware oversampling scheme improves performance while off-loading the related computational burden from the CPU. An analog watchdog block can be used to detect the channels, which are required to remain within a specific threshold window. A configurable channel management block can be used to perform conversions in single, continuous, scan or discontinuous mode to support more advanced use.

The ADC can be triggered from the events generated by the general level 0 timers (TIMERx) and the advanced timers (TIMER0 and TIMER7) with internal connection. The temperature sensor can be used to generate a voltage that varies linearly with temperature. It is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage in a digital value.

Digital to analog converter (DAC)

Two 12-bit DACs with independent output channels
8-bit or 12-bit mode in conjunction with the DMA controller

The two 12-bit buffered DACs are used to generate variable analog outputs. The DAC channels can be triggered by the timer or EXTI with DMA support. In dual DAC channel operation, conversions could be done independently or simultaneously. The maximum output value of the DAC is VREF+.

3.8.DMA

7 channel DMA0 controller and 5 channel DMA1 controller
Peripherals supported: Timers, ADC, SPIs, I2Cs, USARTs, DAC, I2S

The flexible general-purpose DMA controllers provide a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other system functions. Three types of access method are supported: peripheral to memory, memory to peripheral, memory to memory
Each channel is connected to fixed hardware DMA requests. The priorities of DMA channel requests are determined by software configuration and hardware channel number. Transfer size of source and destination are independent and configurable.

General-purpose inputs/outputs (GPIOs)

Up to 112 fast GPIOs, all mappable on 16 external interrupt lines
Analog input/output configurable
Alternate function input/output configurable

There are up to 112 general purpose I/O pins (GPIO) in GD32F307xx, named PA0 ~ PA15 and  PB0  ~ PB15,  PC0  ~  PC15,  PD0  ~ PD15,  PE0  ~  PE15,  PF0-PF15,  PG0-PG15 to
implement logic input/output functions. Each of the GPIO ports has related control and configuration registers to satisfy the requirements of specific applications. The external interrupts on the GPIO pins of the device have related control and configuration registers in the Interrupt/event controller (EXTI). The GPIO ports are pin-shared with other alternative functions (AFs) to obtain maximum flexibility on the package pins. Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-

up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current capable except for analog inputs.

Timers and PWM generation

Two 16-bit advanced timer (TIMER0 & TIMER7), ten 16-bit general timers (TIMER1 ~ TIMER4, TIMER8 ~ TIMER13), and two 16-bit basic timer (TIMER5 & TIMER6)
Up to 4 independent channels of PWM, output compare or input capture for each general timer and external trigger input
16-bit, motor control PWM advanced timer with programmable dead-time generation for output match
Encoder interface controller with two inputs using quadrature decoder
24-bit SysTick timer down counter
2 watchdog timers (Free watchdog timer and window watchdog timer)

The advanced timer (TIMER0 & TIMER7) can be used as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable dead-time generation. It can also be used as a complete general timer. The 4 independent channels can be used for input capture, output compare, PWM generation (edge-aligned or center-aligned counting modes) and single pulse mode output. If configured as a general 16-bit timer, it has the same functions as the TIMERx timer. It can be synchronized with external signals or to interconnect with other general timers together which have the same architecture and features.
The general timer, can be used for a variety of purposes including general time, input signal pulse width measurement or output waveform generation such as a single pulse generation or PWM output, up to 4 independent channels for input capture/output compare. TIMER1 ~ TIMER4 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. TIMER8 ~ TIMER13 is based on a 16-bit auto-reload upcounter and a 16-bit prescaler. The general timer also supports an encoder interface with two inputs using quadrature decoder.
The basic timer, known as TIMER5 & TIMER6, are mainly used for DAC trigger generation. They can also be used as a simple 16-bit time base.
The GD32F307xx have two watchdog peripherals, free watchdog timer and window watchdog timer. They offer a combination of high safety level, flexibility of use and timing accuracy.
The free watchdog timer includes a 12-bit down-counting counter and an 8-bit prescaler, It is clocked from an independent 40 KHz internal RC and as it operates independently of the main clock, it can operate in deep-sleep and standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management.
The window watchdog timer is based on a 7-bit down counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early wakeup interrupt capability and the counter can be frozen in

debug mode.
The SysTick timer is dedicated for OS, but could also be used as a standard down counter. The features are shown below:
A 24-bit down counter
Auto reload capability
Maskable system interrupt generation when the counter reaches 0
Programmable clock source


Real time clock (RTC)

32-bit up-counter with a programmable 20-bit prescaler
Alarm function
Interrupt and wakeup event

The real time clock is an independent timer which provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and an expected interrupt. The RTC features a 32-bit programmable counter for long-term measurement using the compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 KHz from external crystal oscillator.

Inter-integrated circuit (I2C)

Up to two I2C bus interfaces can support both master and slave mode with a frequency up to 1 MHz (Fast mode plus)
Provide arbitration function, optional PEC (packet error checking) generation and checking
Supports 7-bit and 10-bit addressing mode and general call addressing mode

The I2C interface is an internal circuit allowing communication with an external I2C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line (SDA) and a serial clock line (SCL). The I2C module provides several data transfer rates of up to 100 KHz in standard mode, up to 400 KHz in fast mode and up to 1 MHz in the fast mode plus. The I2C module also has an arbitration detect function to prevent the situation where more than one master attempts to transmit data to the I2C bus at the same time. A CRC-8 calculator is also provided in I2C interface to perform packet error checking for I2C data.

Serial peripheral interface (SPI)

Up to three SPI interfaces with a frequency of up to 30 MHz
Support both master and slave mode

Hardware CRC calculation and transmit automatic CRC error checking
Quad-SPI configuration available in master mode (only in SPI0)

The SPI interface uses 4 pins, among which are the serial data input and output lines (MISO & MOSI), the clock line (SCK) and the slave select line (NSS). Both SPIs can be served by the DMA controller. The SPI interface may be used for a variety of purposes, including simplex synchronous transfers on two lines with a possible bidirectional data line or reliable communication using CRC checking. Quad-SPI master mode is also supported in SPI0.

Universal synchronous asynchronous receiver transmitter (USART)
Up to three USARTs and two UARTs with operating frequency up to 7.5M Bits/s
Supports both asynchronous and clocked synchronous serial communication modes
IrDA SIR encoder and decoder support
LIN break generation and detection
USARTs support ISO 7816-3 compliant smart card interface

The USART (USART0, USART1 and USART2) and UART (UART3 & UART4) are used to
translate data between parallel and serial interfaces, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. It is also commonly used for RS-232 standard communication. The USART/UART includes a programmable baud rate generator which is capable of dividing the system clock to produce a dedicated clock for the USART transmitter and receiver. The USART/UART also supports DMA function for high speed data communication except UART4.

Inter-IC sound (I2S)

Two I2S bus Interfaces with sampling frequency from 8 KHz to 192 KHz
Support either master or slave mode

The Inter-IC sound (I2S) bus provides a standard communication interface for digital audio applications by 3-wire serial lines. GD32F307xx contain two I2S-bus interfaces that can be operated with 16/32 bit resolution in master or slave mode, pin multiplexed with SPI1 and SPI2. The audio sampling frequency from 8 KHz to 192 KHz is supported.

Universal serial bus full-speed interface (USBFS)

One USB device/host/full-speed Interface with frequency up to 12 Mbit/s
Internal 48 MHz oscillator (IRC48M) support crystal-less operation
Internal main PLL for USBCLK compliantly
Internal USBFS PHY support

The Universal Serial Bus (USB) is a 4-wire bus with 4 bidirectional endpoints. The device controller enables 12 Mbit/s data exchange with integrated transceivers. Transaction formatting is performed by the hardware, including CRC generation and checking. It supports both host and device modes, as well as OTG mode with Host Negotiation Protocol (HNP) and Session Request Protocol (SRP). The controller contains a full-speed USB PHY internal. For full-speed or low-speed operation, no more external PHY chip is needed. It supports all the four types of transfer (control, bulk, Interrupt and isochronous) defined in USB 2.0 protocol. The required precise 48 MHz clock which can be generated from the internal main PLL (the clock source must use an HXTAL crystal oscillator) or by the internal 48 MHz oscillator (IRC48M) in automatic trimming mode that allows crystal-less operation.

Controller area network (CAN)

Two CAN2.0B interface with communication frequency up to 1 Mbit/s
Internal main PLL for CAN CLK compliantly

Controller area network (CAN) is a method for enabling serial communication in field bus. The CAN protocol has been used extensively in industrial automation and automotive applications. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three mailboxes for transmission and two FIFOs of three message deep for reception. It also provides 28 scalable/configurable identifier filter banks for selecting the incoming messages needed and discarding the others.

Ethernet (ENET)

IEEE 802.3 compliant media access controller (MAC) for Ethernet LAN
10/100 Mbit/s rates with dedicated DMA controller and SRAM
Support hardware precision time protocol (PTP) with conformity to IEEE 1588

The Ethernet media access controller (MAC) conforms to IEEE 802.3 specifications and fully supports IEEE 1588 standards. The embedded MAC provides the interface to the required external network physical interface (PHY) for LAN bus connection via an internal media independent interface (MII) or a reduced media independent interface (RMII). The number of MII signals provided up to 16 with 25 MHz output and RMII up to 7 with 50 MHz output. The function of 32-bit CRC checking is also available.

External memory controller (EXMC)

Supported external memory: SRAM, PSRAM, ROM and NOR-Flash, NAND Flash and PC card
Provide ECC calculating hardware module for NAND Flash memory block
Up to 16-bit data bus
Support to interface with Motorola 6800 and Intel 8080 type LCD directly

External memory controller (EXMC) is an abbreviation of external memory controller. It is divided in to several sub-banks for external device support, each sub-bank has its own chip selection signal but at one time, only one bank can be accessed. The EXMC support code execution from external memory except NAND Flash and PC card. The EXMC also can be configured to interface with the most common LCD module of Motorola 6800 and Intel 8080 series and reduce the system cost and complexity.

Debug mode

Serial wire JTAG debug port (SWJ-DP)

The ARM® SWJ-DP Interface is embedded and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

Package and operation temperature

LQFP144 (GD32F307Zx), LQFP100 (GD32F307Vx) and LQFP64 (GD32F307Rx)
Operation temperature range: -40°C to +85°C (industrial level)

扫二维码用手机看

飞睿无线定位测距uwb标签UWB芯片厂商UWB定位公司实现无缝定位的领跑者

在当今数字化世界中,定位技术的重要性越来越被广泛认知和应用。从室内导航到物流跟踪,无线测距UWB芯片的出现为各行各业带来了新的可能性。而在这个充满竞争的领域中,一家名为飞睿UWB定位公司的无线定位测距uwb标签UWB芯片厂商,凭借其先进的技术和创新能力,成功成为实现无缝定位的先进者。 UWB(Ultra-Wideband)是一种广泛应用于室内定位和跟踪的无线通信技术。相比传统的定位技术,如GPS或Wi-Fi,UWB具有更高的精度和定位准确性。这一技术利用短脉冲信号的传播时间来计算物体与基站之间的距离,从而实现高精度的定位。 飞睿UWB定位公司作为一家专注于UWB技术研发和应用的企业,不仅在无线定位测距uwb标签UWB芯片领域拥有深厚的技术实力,而且在产品研发和市场推广方面也积累了丰富的经验。该公司的核心业务包括UWB芯片的设计、制造、销售和技术支持,并提供完整的解决方案来满足不同行业的需求。 一、UWB芯片的优势和应用 UWB芯片作为实现准确定位和跟踪的关键技术,具有许多优势和广泛应用的潜力。首先,UWB芯片具有高精度的定位能力,可以达到亚厘米级的精度,尤其适用于对位置精度要求高的应用场景。其次,UWB技术在室内环境中的表现出色,能够克服传统技术在室内多路径干扰和信号衰减方面的限制。此外,UWB芯片还能够实现低功耗和高数据传输速率,适用于物流追踪、室内导航、智能家居等领域。 二、飞睿UWB定位公司的研发实力和技术创新 飞睿UWB定位公司以其突出的研发实力和技术创新能力在行业内独树一帜。该公司拥有一支由工程师和科研人员组成的专业团队,致力于UWB芯片的研发和创新应用。不仅在硬件设计方面有着丰富的经验,还在信号处理算法和定位算法等核心技术上有着深入研究。通过持续的技术创新和研发投入,UWB定位公司不断地提升产品性能,满足市场需求。 三、UWB定位公司的产品与解决方案 飞睿作为一家专业的无线定位测距uwb标签UWB芯片厂商,UWB定位公司提供了多款优秀的产品与解决方案。首先,飞睿的UWB芯片具有高性能和可靠性,能够满足各行业对定位精度和稳定性的要求。其次,UWB定位公司还提供完善的软件开发工具和技术支持,帮助客户快速集成和开发应用。此外,UWB定位公司还定制化的解决方案,根据客户的具体需求提供全面的技术支持和服务,确保系统的稳定运行和良好的用户体验。 四、UWB定位公司的应用案例 UWB定位公司的产品和解决方案已经成功应用于多个行业,并取得了显著的成果。以下是一些应用案例的介绍: 1. 物流和仓储管理:UWB定位技术可以实时追踪货物的位置和运动轨迹,提高物流效率和准确性。通过在仓库内部安装UWB基站,可以实现对货物的高精度定位,减少货物丢失和误配的情况,提升仓储管理的效率。 2. 室内导航和定位服务:UWB芯片可以用于室内导航和定位服务,帮助人们快速找到目的地并提供导航指引。在商场、机场、医院等场所安装UWB基站,可以提供准确的导航服务,为用户提供更好的体验。 3. 车联网和自动驾驶:UWB技术在车联网和自动驾驶领域也有广泛应用。通过在车辆中安装UWB传感器和芯片,可以实现车辆之间的精准通信和定位,提升驾驶安全性和车辆自主性。 4. 工业制造和机器人:在工业制造和机器人领域,UWB技术可以用于定位和跟踪移动设备和机器人的位置,提高生产效率和自动化水平。通过与其他传感器和系统的结合,可以实现更智能化的制造和操作。 五、未来发展和挑战 飞睿作为无线定位测距uwb标签UWB芯片厂商和定位技术提供商,UWB定位公司面临着许多机遇和挑战。随着物联网和人工智能的快速发展,对于精准定位和跟踪的需求将越来越大。UWB技术在室内定位、智能交通、工业制造等领域有着广阔的应用前景。然而,市场竞争激烈,技术要求不断提高,对于UWB定位公司来说,需要不断加强技术研发和创新能力,提供更优秀的产品和解决方案,赢得客户的信任和市场份额。 六、技术合作与生态建设 飞睿UWB定位公司在推动技术合作与生态建设方面也取得了显著成绩。他们积极与其他行业的厂商和合作伙伴进行技术交流和合作,共同推动UWB技术的发展和应用。通过与硬件设备生产商、软件开发公司以及系统集成商等的合作,UWB定位公司不仅拓展了产品的应用领域,还实现了技术的互补和资源的共享,加快了技术创新的速度和效果。 七、用户体验与满意度 作为先进的UWB芯片厂商和定位技术提供商,飞睿UWB定位公司一直将用户体验和满意度放在优先位置。他们注重产品的易用性和稳定性,在产品设计和功能开发上持续优化,以提供更好的用户体验。同时,UWB定位公司还建立了完善的售后服务体系,及时响应客户的需求和问题,并提供技术支持和解决方案,确保用户能够充分发挥UWB技术的价值和效果,获得满意的使用体验。 八、安全与隐私保护 在定位技术应用的同时,飞睿UWB定位公司也重视用户的安全和隐私保护。他们在产品设计和开发中注入了安全机制,采用加密和身份验证等技术手段,确保用户的数据和隐私得到有效保护。同时,UWB定位公司严格遵守相关法规和行业标准,保证数据的合法和合规使用,为用户提供可信赖的定位解决方案。 九、社会责任与可持续发展 作为一家具有社会责任感的企业,飞睿uwb标签UWB定位公司积极关注可持续发展和环境保护。他们在生产过程中注重资源的合理利用和能源的节约,致力于减少对环境的影响。同时,UWB定位公司也积极参与社会公益活动,回馈社会,为推动可持续发展和社会进步做出贡献。 总结: 飞睿UWB定位公司作为一家先进的无线定位测距uwb标签UWB芯片厂商和解决方案提供商,通过先进的技术研发和创新能力,成功实现了无缝定位的先进地位。他们的产品和解决方案在物流管理、室内导航、车联网、工业制造等领域展现出了巨大的应用潜力和市场前景。同时,UWB定位公司注重用户体验和满意度,积极推动技术合作与生态建设,关注安全与隐私保护,承担社会责任,致力于可持续发展。相信在不久的将来,UWB定位公司将以其先进的技术和卓越的服务,继续引领无线测距UWB芯片领域的发展,为行业和用户带来更多的创新和价值。
点击查看更多
18
2022-02

uA级别智能门锁低功耗雷达模块让门锁更加智能省电节约功耗

发布时间: : 2022-02--18
uA级别智能门锁低功耗雷达模块让门锁更加智能省电节约功耗,指纹门锁并不是什么新鲜事,我相信每个人都很熟悉。随着近年来智能家居的逐步普及,指纹门锁也进入了成千上万的家庭。今天的功耗雷达模块指纹门锁不仅消除了繁琐的钥匙,而且还提供了各种智能功能,uA级别智能门锁低功耗雷达模块用在智能门锁上,可以实现门锁的智能感应屏幕,使电池寿命延长3-5倍,如与其他智能家居连接,成为智能场景的开关。所以今天的指纹门锁更被称为智能门锁。 今天,让我们来谈谈功耗雷达模块智能门锁的安全性。希望能让更多想知道智能门锁的朋友认识下。 指纹识别是智能门锁的核心 指纹识别技术在我们的智能手机上随处可见。从以前的实体指纹识别到屏幕下的指纹识别,可以说指纹识别技术已经相当成熟。指纹识别可以说是整个uA级低功耗雷达模块智能门锁的核心。 目前主要有三种常见的指纹识别方法,即光学指纹识别、半导体指纹识别和超声指纹识别。 光学指纹识别 让我们先谈谈光学指纹识别的原理实际上是光的反射。我们都知道指纹本身是不均匀的。当光照射到我们的指纹上时,它会反射,光接收器可以通过接收反射的光来绘制我们的指纹。就像激光雷达测绘一样。 光学指纹识别通常出现在打卡机上,手机上的屏幕指纹识别技术也使用光学指纹识别。今天的光学指纹识别已经达到了非常快的识别速度。 然而,光学指纹识别有一个缺点,即硬件上的活体识别无法实现,容易被指模破解。通常,活体识别是通过软件算法进行的。如果算法处理不当,很容易翻车。 此外,光学指纹识别也容易受到液体的影响,湿手解锁的成功率也会下降。 超声指纹识别 超声指纹识别也被称为射频指纹识别,其原理与光学类型相似,但超声波使用声波反射,实际上是声纳的缩小版本。因为使用声波,不要担心水折射会降低识别率,所以超声指纹识别可以湿手解锁。然而,超声指纹识别在防破解方面与光学类型一样,不能实现硬件,可以被指模破解,活体识别仍然依赖于算法。 半导体指纹识别 半导体指纹识别主要采用电容、电场(即我们所说的电感)、温度和压力原理来实现指纹图像的收集。当用户将手指放在前面时,皮肤形成电容阵列的极板,电容阵列的背面是绝缘极板。由于不同区域指纹的脊柱与谷物之间的距离也不同,因此每个单元的电容量随之变化,从而获得指纹图像。半导体指纹识别具有价格低、体积小、识别率高的优点,因此大多数uA级低功耗雷达模块智能门锁都采用了这种方案。半导体指纹识别的另一个功能是活体识别。传统的硅胶指模无法破解。 当然,这并不意味着半导体可以百分识别活体。所谓的半导体指纹识别活体检测不使用指纹活体体征。本质上,它取决于皮肤的材料特性,这意味着虽然传统的硅胶指模无法破解。 一般来说,无论哪种指纹识别,都有可能被破解,只是说破解的水平。然而,今天的指纹识别,无论是硬件生活识别还是算法生活识别,都相对成熟,很难破解。毕竟,都可以通过支付级别的认证,大大保证安全。 目前,市场上大多数智能门锁仍将保留钥匙孔。除了指纹解锁外,用户还可以用传统钥匙开门。留下钥匙孔的主要目的是在指纹识别故障或智能门锁耗尽时仍有开门的方法。但由于有钥匙孔,它表明它可以通过技术手段解锁。 目前市场上的锁等级可分为A、B、C三个等级,这三个等级主要是通过防暴开锁和防技术开锁的程度来区分的。A级锁要求技术解锁时间不少于1分钟,B级锁要求不少于5分钟。即使是高级别的C级锁也只要求技术解锁时间不少于10分钟。 也就是说,现在市场上大多数门锁,无论是什么级别,在专业的解锁大师面前都糊,只不过是时间长短。 安全是重要的,是否安全增加了人们对uA级别低功耗雷达模块智能门锁安全的担忧。事实上,现在到处都是摄像头,强大的人脸识别,以及移动支付的出现,使家庭现金减少,所有这些都使得入室盗窃的成本急剧上升,近年来各省市的入室盗窃几乎呈悬崖状下降。 换句话说,无论锁有多安全,无论锁有多难打开,都可能比在门口安装摄像头更具威慑力。 因此,担心uA级别低功耗雷达模块智能门锁是否不安全可能意义不大。毕竟,家里的防盗锁可能不安全。我们应该更加关注门锁能给我们带来多少便利。 我们要考虑的是智能门锁的兼容性和通用性。毕竟,智能门锁近年来才流行起来。大多数人在后期将普通机械门锁升级为智能门锁。因此,智能门锁能否与原门兼容是非常重要的。如果不兼容,发现无法安装是一件非常麻烦的事情。 uA级别低功耗雷达模块智能门锁主要是为了避免带钥匙的麻烦。因此,智能门锁的便利性尤为重要。便利性主要体现在指纹的识别率上。手指受伤导致指纹磨损或老年人指纹较浅。智能门锁能否识别是非常重要的。 当然,如果指纹真的失效,是否有其他解锁方案,如密码解锁或NFC解锁。还需要注意密码解锁是否有虚假密码等防窥镜措施。 当然,智能门锁的耐久性也是一个需要特别注意的地方。uA级别低功耗雷达模块智能门锁主要依靠内部电池供电,这就要求智能门锁的耐久性尽可能好,否则经常充电或更换电池会非常麻烦。 智能门锁低功耗雷达模块:让门锁更加智能省电节约功耗 在当今信息化时代,智能门锁已经成为人们生活中不可或缺的一部分。对于门锁制造商来说,如何提高门锁的安全性、实用性和便利性,成为他们面对的重要课题。随着人们对门锁智能化的需求越来越高,门锁的能耗问题也成为了门锁制造商需要重视的问题。为此,越来越多的门锁制造商开始推出以低功耗为主题的系列产品。在这样的背景下,智能门锁低功耗雷达模块应运而生。 智能门锁低功耗雷达模块是一种新型技术,其采取雷达技术对门锁周围的物体进行探测,一旦发现门锁附近有人靠近,便会将门锁自动解锁,无需使用钥匙。同时,在保持智能控制的前提下,实现了门锁省电、节约功耗,延长门锁使用寿命。 在使用智能门锁低功耗雷达模块的门锁中,控制电路和自动解锁机制是关键的部件。控制电路采用先进的芯片技术,通过优秀的功耗控制以实现模块化管理。而自动解锁机制不仅可以通过微波信号控制实现门锁的无钥匙解锁,还能够在门锁未处理的情况下自动锁定,保障门锁的安全。 智能门锁低功耗雷达模块的主要特点是:低功耗、高灵敏度和高可靠性。该模块在进行人体检测时,可以远距离探测到距离为5-7米远处的人体信号,目标检测速度极快,而且对门锁周围的环境要求不高。同时,该模块采用了自适应自动补偿技术,能够根据不同环境的变化自动调整信号发射和接收参数,减小误检率。 在使用智能门锁低功耗雷达模块的门锁中,其功耗可以做到非常低,一组电池能够支持门锁持续使用几年左右。而且这样的智能门锁除了具有自动解锁的功能,还可与APP相互匹配,实现了远程操作的便捷性。 总的来说,智能门锁低功耗雷达模块的问世,解决了门锁安全性和省电节省方面的问题,是智能门锁材料不可或缺的一部分。作为门锁制造商,只有不断创新,利用这种新型技术,将会在行业中占据重要的地位。 除了上文所述的主要特点和优势,智能门锁低功耗雷达模块还具有以下几点: 1. 实时监测门锁周围环境变化,通过物体的距离体积和运动来确定是否有人靠近门锁,并控制门锁的开启或关闭,使得门锁更加智能化。 2. 可对门锁附件进行检测,如门挂、门应急照明灯以及紧急呼叫按钮等,并及时给出响应,确保门锁能够正常运作。这样,门锁在不受干扰的情况下,能够 保持安全通道。 3. 通过智能学习技术,能够自适应网站多种环境的变化,让智能门锁低功耗雷达模块更加准确和精细的控制门锁的开关,节约能耗并延长使用寿命。 4. 能够与其他智能电器相连,如智能家居系统、电视等,形成智能家居生态圈,更好地控制家庭访客进出,让生活更加方便。 综上所述,智能门锁低功耗雷达模块的出现,对提升门锁能耗管理和智能化有着重要作用。门锁制造商只有将这些新型技术运用到门锁产品中,才能更加贴合用户需求,满足消费市场的日益增长的智能化需求。
查看详情 查看详情
14
2022-01

微波雷达传感器雷达感应浴室镜上的应用

发布时间: : 2022-01--14
微波雷达传感器雷达感应浴室镜上的应用,如今,家用电器的智能化已成为一种常态,越来越多的人开始在自己的浴室里安装智能浴室镜。但是还有很多人对智能浴镜的理解还不够深入,今天就来说说这个话题。 什么是智能浴室镜?智慧型浴室镜,顾名思义,就是卫浴镜子智能化升级,入门级产品基本具备了彩灯和镜面触摸功能,更高档次的产品安装有微波雷达传感器智能感应,当感应到有人接近到一定距离即可开启亮灯或者亮屏操作,也可三色无极调,智能除雾,语音交互,日程安排备忘,甚至在镜子上看电视,听音乐,气象预报,问题查询,智能控制,健康管理等。 智能化雷达感应浴室镜与普通镜的区别,为什么要选TA?,就功能而言,普通浴镜价格用它没有什么压力!而且雷达感应智能浴镜会让人犹豫不决是否“值得一看”。就功能和应用而言,普通浴镜功能单一,而微波雷达传感器智能浴室镜功能创新:镜子灯光色温和亮度可以自由调节,镜面还可以湿手触控,智能除雾,既环保又健康! 尽管智能浴镜比较新颖,但功能丰富,体验感更好,特别是入门级的智能浴镜,具有基础智能化功能,真的适合想体验下智能化的小伙伴们。 给卫生间安装微波雷达传感器浴室镜安装注意什么? ①确定智能浴室镜的安装位置,因为是安装时在墙壁上打孔,一旦安装后一般无法移动位置。 ②在选购雷达感应智能浴室镜时,根据安装位置确定镜子的形状和尺寸。 ③确定智能浴镜的安装位置后,在布线时为镜子预留好电源线。 ④确定微波雷达传感器智能浴镜的安装高度,一般智能浴镜的标准安装高度约85cm(从地砖到镜子底),具体安装高度要根据家庭成员的身高及使用习惯来决定。 ⑤镜面遇到污渍,可用酒精或30%清洁稀释液擦洗,平时可用干毛巾养护,注意多通风。
查看详情 查看详情
13
2024-12

低延时通信国产UWB芯片与UWB基站的发展与应用

发布时间: : 2024-12--13
在信息化社会的浪潮中,无线通信技术的革新与进步不断推动着各行各业的快速发展。超宽带(Ultra-Wideband,简称UWB)技术,以其高速率、低功耗、高精度定位和低延时通信等特点,成为了无线通信领域的一股新势力。近年来,国产UWB芯片与UWB基站的研发与应用取得了显著进展,不仅填补了国内相关领域的空白,更在全球范围内展现了我国无线通信技术的创新实力。 低延时通信是UWB技术的重要优势之一,对于许多对实时性要求高的应用场景,如智能家居控制、汽车自动驾驶、工业自动化等领域,低延时通信都是不可或缺的关键因素。国产UWB芯片与基站在这些领域的应用,不仅提升了通信效率,也为相关产业的发展注入了新的活力。 二、国产UWB芯片的发展历程 技术起源与初期发展 UWB技术起源于20世纪60年代,初被应用于雷达和军事通信领域。随着技术的不断发展,UWB逐渐走进了民用市场,并在短距离无线通信领域展现出了巨大的潜力。我国早期对UWB技术的研究主要集中在跟踪国外先进技术和发展趋势上,随着国内科研实力的提升和市场需求的增长,国产UWB芯片的研发逐渐提上日程。 在初期发展阶段,国产UWB芯片面临着技术难度大、研发周期长、成本高等诸多挑战。然而,通过科研人员的不断努力和技术攻关,国产UWB芯片逐渐取得了突破性进展,性能指标不断提升,成本也得到有效控制。 技术成熟与市场推广 随着技术的成熟和市场需求的增加,国产UWB芯片开始进入市场推广阶段。国内厂商通过与下游应用厂商的合作,将UWB芯片应用于智能家居、智能穿戴、工业自动化等领域,取得了良好的市场反响。同时,国产UWB芯片也逐步走向国际市场,与全球范围内的厂商展开合作与竞争。 市场推广过程中,国产UWB芯片不仅展现了出色的性能和稳定性,还凭借较高的性价比赢得了用户的青睐。此外,国内厂商还通过不断优化产品设计、提升生产效率等方式降低成本,进一步增强了市场竞争力。 三、UWB基站的技术特点与优势 低延时通信的实现 UWB技术通过短的脉冲信号实现高速数据传输,从而有效降低了通信延时。国产UWB基站采用了先进的信号处理技术和优化算法,进一步提升了低延时通信的性能。在实际应用中,国产UWB基站能够实现毫秒级甚至亚毫秒级的通信延时,为实时性要求高的应用场景提供了有力支持。 此外,国产UWB基站还具备较高的抗干扰能力和稳定性,能够在复杂环境中保持稳定的通信性能。这些特点使得国产UWB基站在众多领域中具有广泛的应用前景。 高精度定位与数据传输 除了低延时通信外,国产UWB基站还具备高精度定位能力。通过测量信号传输时间差或信号到达角度等方式,UWB基站可以实现厘米级甚至毫米级的定位精度。这一特点使得国产UWB基站在智能家居、工业自动化等领域具有广泛的应用价值。例如,在智能家居领域,通过UWB基站实现设备的准确定位和远程控制,可以为用户提供更加便捷和智能的生活体验。 同时,国产UWB基站还支持高速数据传输。利用UWB技术的高速率特性,基站可以实现大量数据的快速传输和处理,满足各种应用场景的需求。 四、国产UWB芯片与UWB基站在各领域的应用 智能家居领域 随着智能家居市场的快速发展,用户对家居设备的智能化和便捷性要求越来越高。国产UWB芯片与基站凭借低延时通信和高精度定位等优势,在智能家居领域得到了广泛应用。通过UWB技术,用户可以实现对家居设备的准确控制和远程操作,提升家居生活的智能化水平。同时,UWB技术还可以应用于智能安防领域,实现家居安全监控和入侵报警等功能。 汽车自动驾驶领域 汽车自动驾驶是近年来的热门领域,对于实现车辆的自主导航、障碍物识别、安全避障等功能至关重要。国产UWB芯片与基站能够为自动驾驶汽车提供实时、准确的位置和速度信息,助力汽车实现更加安全、可靠的自动驾驶。通过UWB技术的准确定位和通信能力,自动驾驶汽车可以更好地应对复杂交通环境,提高行驶安全性。 工业物联网领域 工业物联网是工业互联网的重要组成部分,通过实现设备与设备、人与设备之间的互联互通,提升工业生产的效率和智能化水平。国产UWB芯片与基站在工业物联网领域具有广泛的应用前景。通过UWB技术实现设备的准确定位和数据传输,可以实现对生产过程的实时监控和优化,提高生产效率和质量。同时,UWB技术还可以应用于工业自动化控制系统中,实现对机器人、自动化设备等的精准控制。 五、国产UWB芯片与UWB基站的未来发展与挑战 技术创新与研发趋势 随着无线通信技术的不断进步和应用场景的不断拓展,国产UWB芯片与基站面临着技术创新和研发趋势的挑战。未来,国产UWB芯片与基站将致力于进一步提高通信速率、降低功耗、增强抗干扰能力等方面的技术创新。同时,随着物联网、人工智能等技术的融合发展,国产UWB技术也将与这些先进技术相结合,实现更加智能化、高效化的应用。 在研发趋势上,国产UWB芯片与基站将更加注重低功耗设计,以适应物联网设备对长时间运行的需求。此外,随着5G、6G等新一代通信技术的快速发展,国产UWB技术也将与这些技术实现深度融合,共同推动无线通信技术的进步。 市场竞争与挑战 当前,国内外UWB市场呈现出激烈的竞争态势。国外厂商凭借先进的技术和品牌影响力,在市场上占据了一定的优势。而国内厂商则通过不断创新和优化产品性能,努力提升市场竞争力。然而,国产UWB芯片与基站在发展过程中仍面临着一些挑战,如技术瓶颈、成本控制、市场推广等方面的问题。 为了应对这些挑战,国内厂商需要加大研发投入,加强技术创新和人才培养,提升产品性能和质量。同时,还需要加强市场推广和品牌建设,提高用户对国产UWB技术的认知度和接受度。此外,政府和社会各界也应给予更多的支持和关注,为国产UWB技术的发展创造良好的环境和条件。 六、结论 综上所述,国产UWB芯片与UWB基站在低延时通信领域的发展与应用已经取得了显著的成果,为众多行业带来了未有的发展机遇。未来,随着技术的不断创新和市场的不断拓展,国产UWB技术有望在更多领域发挥重要作用,推动我国无线通信事业的持续发展。同时,面对激烈的市场竞争和技术挑战,国内厂商需要加大研发投入和市场推广力度,不断提升产品性能和市场竞争力,为国产UWB技术的长远发展奠定坚实基础。
查看详情 查看详情
12
2024-12

超宽带定位UWB通信芯片与UWB定位系统深度解析

发布时间: : 2024-12--12
在无线通信技术的发展历程中,超宽带(UWB)通信技术以其独特的优势逐渐崭露头角。超宽带通信技术是一种利用短脉冲信号进行无线数据传输的技术,它的频谱范围宽,这使得它在数据传输速率和定位精度上具有显著优势。与传统的无线通信技术相比,UWB技术无需使用载波,而是直接对纳秒至微秒级的非正弦波窄脉冲进行调制,具有功耗低、安全性高等特点。 二、UWB通信芯片的工作原理及特点深度解析 UWB通信芯片作为实现UWB通信技术的核心部件,其工作原理基于脉冲无线电技术。芯片通过发射和接收短脉冲信号来传输数据,这些脉冲信号的持续时间短,因此具有高的时间分辨率和空间分辨率。 在具体特点上,UWB通信芯片首先体现在其高定位精度上。由于脉冲信号的短时间特性,UWB通信芯片可以实现厘米级别的定位精度,这在许多需要准确位置信息的场景中具有重要意义。其次,UWB通信芯片的功耗相对较低。由于采用短脉冲信号进行通信,芯片在数据传输过程中的能耗较低,有助于延长设备的使用寿命。此外,UWB通信芯片还具有高传输速率和强抗干扰能力等特点,使得它在复杂环境中也能保持稳定的通信性能。 三、UWB定位系统原理及应用深度解析 UWB定位系统利用UWB通信芯片实现高精度定位。其原理主要是通过布置在空间中的多个UWB通信芯片作为锚点,并与待定位的目标设备进行通信。通过测量信号传输的时间差或角度差等参数,系统可以准确计算出目标设备的位置信息。 UWB定位系统的应用广泛且深入。在室内定位领域,由于UWB技术的高精度特性,它可以用于商场、医院、博物馆等公共场所的导航和定位服务,为用户提供更加便捷和准确的导航体验。在物联网应用中,UWB定位技术可以实现设备之间的准确位置感知和协同工作,推动智能家居、智能物流等领域的快速发展。此外,在无人驾驶和工业自动化领域,UWB定位技术也发挥着重要作用,为无人驾驶汽车、无人机和机器人等设备的准确导航和定位提供了有力支持。 四、UWB通信芯片与定位系统的市场前景深度解析 随着物联网、无人驾驶、工业自动化等领域的快速发展,对高精度定位技术的需求日益增长。UWB通信芯片与定位系统以其独特的优势,如高定位精度、低功耗、高传输速率等,逐渐成为这些领域的选择技术。预计未来几年,随着技术的不断成熟和市场的不断拓展,UWB通信芯片与定位系统的市场规模将持续扩大,市场前景广阔。 此外,政策支持和产业环境的优化也为UWB通信芯片与定位系统的发展提供了有力保障。各国政府纷纷出台相关政策,鼓励和支持无线通信技术的创新和发展。同时,产业链上下游企业也加强合作,共同推动UWB技术的产业化进程。这将为UWB通信芯片与定位系统的市场拓展和应用推广提供有力支持。 五、UWB通信芯片与定位系统的发展趋势深度解析 技术创新将持续推动UWB通信芯片与定位系统的发展。随着研究的不断深入,未来的UWB通信芯片将具有更高的集成度、更低的功耗和更高的性能。同时,定位算法也将不断优化,提高定位精度和稳定性。这将为UWB通信芯片与定位系统在更多领域的应用提供可能。 多模融合将成为UWB通信系统发展的重要方向。为了满足不同应用场景的需求,未来的UWB通信系统将实现与其他无线通信技术的融合,如蓝牙、Wi-Fi等。这将使UWB通信系统在保持高精度定位的同时,具备更广泛的通信能力和更强的适应性。 安全与隐私保护将成为UWB通信芯片与定位系统发展的重要考量因素。随着UWB技术的广泛应用,数据安全和隐私保护问题日益凸显。未来的UWB通信系统将加强数据加密和隐私保护措施,确保用户数据的安全性和隐私性。 标准化与产业化进程将加速推进。为了推动UWB技术的广泛应用和产业化发展,国际标准化组织将加快制定和完善UWB技术的相关标准,促进不同厂商之间的兼容性和互操作性。同时,产业链上下游企业也将加强合作,共同推动UWB技术的产业化进程,降低生产成本,提高市场竞争力。 六、结语 超宽带(UWB)通信芯片与定位系统作为一种新型的无线通信技术,以其高精度、低功耗、高传输速率等优势在各个领域展现出巨大的应用潜力。随着技术的不断创新和市场的不断扩大,我们有理由相信,UWB通信芯片与定位系统将在未来发挥更加重要的作用,为人们的生活和工作带来更加便捷和高效的体验。同时,我们也期待着更多的研究者和企业加入到这一领域中来,共同推动UWB技术的发展和应用推广。
查看详情 查看详情
11
2024-12

户外定位UWB测距芯片uwb是什么技术深度解析

发布时间: : 2024-12--11
在无线通信技术日新月异的今天,超宽带(Ultra-Wideband,简称UWB)技术以其独特的优势,逐渐在户外定位领域崭露头角。UWB测距芯片作为实现高精度定位的核心部件,其技术原理、特点以及应用前景都值得我们深入探讨。 一、UWB技术概述:创新性的通信方式 UWB技术是一种利用极短脉冲进行数据传输的无线通信技术。与传统的窄带通信相比,UWB信号的带宽通常超过500MHz,这使得它在数据传输速率和定位精度上都具有显著优势。UWB技术不仅可以实现高速数据传输,而且能够准确测量信号传输时间,从而实现厘米级的定位精度。 此外,UWB技术还具有低功耗、抗干扰能力强等优点。由于UWB信号采用极短脉冲进行传输,因此其功耗相对较低。同时,UWB信号对电磁干扰的抵抗力也较强,能够在复杂环境中稳定工作。 二、户外定位UWB测距芯片的核心原理:精准测量的基石 户外定位UWB测距芯片是实现高精度定位的关键所在。其核心原理基于信号的时间飞行时间(Time of Flight,简称TOF)或到达角度(Angle of Arrival,简称AOA)等测量技术。 在TOF测量技术中,UWB测距芯片通过测量信号在发送端和接收端之间的传输时间,结合已知的信号传播速度,可以计算出两者之间的距离。这种测量方法具有高精度和可靠性,适用于各种户外定位场景。 而AOA测量技术则是通过测量信号到达接收端时的角度信息,结合多个接收点的数据,可以确定目标的位置信息。这种方法可以实现三维空间的定位,进一步提高定位的精度和可靠性。 为了实现这些测量功能,UWB测距芯片需要具备高精度的时钟同步和信号处理能力。通过优化时钟源的稳定性和精度,以及采用先进的信号处理技术,可以有效提高测距的准确性和稳定性。 三、户外定位UWB测距芯片的技术特点:优势显著,应用广泛 高精度定位:UWB测距芯片利用极短脉冲进行信号传输,结合先进的测量技术,可以实现厘米级的定位精度。这种高精度定位能力使得UWB测距芯片在户外定位领域具有独特的优势,能够满足各种高精度定位需求。 高速数据传输:除了定位功能外,UWB测距芯片还支持高速数据传输。这使得它能够在实现准确定位的同时,传输其他相关数据,如传感器数据、用户信息等。这种多功能性为户外定位应用提供了更丰富的功能选择。 低功耗设计:考虑到户外环境中设备的续航能力,UWB测距芯片采用了低功耗设计。通过优化硬件结构和软件算法,降低了芯片的功耗,延长了设备的使用时间。这种低功耗特性使得UWB测距芯片在户外长时间工作的场景中更具优势。 抗干扰能力强:户外环境复杂多变,存在各种电磁干扰。UWB测距芯片采用了先进的抗干扰技术,能够在强干扰环境下稳定工作,确保定位数据的准确性和可靠性。这种抗干扰能力使得UWB测距芯片在复杂环境中具有更好的适用性。 四、户外定位UWB测距芯片的应用前景:广阔天地,大有可为 随着技术的不断进步和市场的不断扩大,户外定位UWB测距芯片的应用前景越来越广阔。以下是几个主要的应用领域: 无人驾驶与自动驾驶:在无人驾驶汽车、无人机等交通工具中,高精度定位是实现自动驾驶的关键。UWB测距芯片可以为这些设备提供准确的位置信息,帮助它们实现自主导航和避障功能。随着自动驾驶技术的不断发展,UWB测距芯片将在这一领域发挥越来越重要的作用。 户外探险与旅游:对于户外探险者和旅游者来说,了解自身位置是保障安全的前提。UWB测距芯片可以与智能手机、智能手表等设备结合,为用户提供实时定位服务。通过精准定位,用户可以更好地规划行程,避免迷路或走失的情况发生。同时,在紧急情况下,UWB测距芯片还可以帮助救援人员快速定位被困人员,提高救援效率。 智慧物流与仓储管理:在物流行业和仓储管理中,对货物和设备的准确定位有助于提高管理效率。UWB测距芯片可以应用于智能货架、AGV小车等场景,实现货物的自动识别和定位。通过实时监测货物的位置和状态,企业可以优化物流运作流程,提高仓储管理的智能化水平。 公共安全与救援:在公共安全领域,如消防、救援等场景中,UWB测距芯片同样发挥着重要作用。通过准确测量被困人员或危险源的位置信息,救援人员可以迅速制定救援方案,提高救援效率和安全性。此外,UWB测距芯片还可以用于监测灾害现场的变化情况,为灾害预警和应急响应提供有力支持。 五、总结与展望:创新创新未来,UWB技术再攀高峰 户外定位UWB测距芯片作为实现高精度定位的关键技术,在各个领域展现出了巨大的应用潜力。随着技术的不断进步和市场的不断扩大,未来UWB测距芯片将在更多领域得到应用,为人们的生活带来更多便利和安全。 然而,我们也必须认识到,任何技术的发展都面临着挑战和难点。对于户外定位UWB测距芯片而言,如何进一步提高定位精度、降低功耗、增强抗干扰能力等问题仍然需要深入研究。同时,随着5G、物联网等技术的快速发展,如何将这些技术与UWB技术相结合,实现更高效的数据传输和更精准的定位,也是未来研究的重要方向。 此外,标准化和互通性也是UWB技术发展中需要关注的问题。目前,不同厂商生产的UWB设备可能存在一定的兼容性问题,这在一定程度上限制了UWB技术的应用范围。因此,推动UWB技术的标准化进程,加强不同设备之间的互通性,将有助于促进UWB技术的更广泛应用。 展望未来,随着技术的不断创新和市场的不断拓展,户外定位UWB测距芯片有望在更多领域发挥重要作用。我们可以预见,在未来的智能交通、智慧城市、公共安全等领域,UWB技术将为我们的生活带来更多惊喜和便利。 同时,我们也需要关注到UWB技术在隐私保护方面的挑战。由于UWB技术能够实现高精度定位,这也可能带来隐私泄露的风险。因此,在推动UWB技术发展的同时,我们也需要加强相关法律法规的制定和执行,确保个人隐私得到充分保护。 总之,户外定位UWB测距芯片作为一种具有高精度、高速数据传输和低功耗等特点的无线通信技术,将在未来的户外定位领域发挥越来越重要的作用。我们有理由相信,随着技术的不断成熟和应用场景的拓展,UWB测距芯片将为我们的生活带来更多便利和惊喜。同时,我们也需要关注并解决技术发展过程中可能出现的挑战和问题,为UWB技术的可持续发展提供有力保障。
查看详情 查看详情
上一页
1
2
...
308

地址:深圳市宝安区西乡街道麻布社区宝安互联网产业基地A区6栋7栋7706

邮箱:Sales@ferry-semi.com

版权所有©2020  深圳市飞睿科技有限公司  粤ICP备2020098907号    飞睿科技微波雷达wifi模块网站地图

 

免责声明:本网站部分图片和文字内容可能来源于网络,转载目的在于传递更多信息,并不代表本网站赞同其观点或证实其内容的真实性。如涉及作品内容、版权和其它问题,请在30日内与本网站联系,我们将在第一时间删除内容!本站拥有对此声明的最终解释权。