这是描述信息
兆易创新GD32-GigaDevice-兆易创新代理

兆易创新GD32F207ZGT6-GD32 ARM Cortex-M3 Microcontroller

兆易创新GD32F207ZGT6-GD32 ARM Cortex-M3 Microcontroller GigaDevice Semiconductor Inc. GD32F207xx ARM® Cortex®-M3 32-bit MCU Datasheet   General description The GD32F207xx device belongs to the performance line of GD32 MCU Family. It is a new 32-bit general-purpose microcontroller based on the ARM® Cortex®-M3 RISC core with best cost-performance ratio in terms of processing capacity, reduced power consumption and peripheral set. The Cortex®-M3 is a next generation processor core which is tightly coupled with a Nested Vectored Interrupt Controller (NVIC), SysTick timer and advanced debug support. The GD32F207xx device incorporates the ARM® Cortex®-M3 32-bit processor core operating at 120 MHz frequency with flash accesses zero wait states to obtain maximum efficiency. It provides up to 3072 KB on-chip flash memory and 256 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer up to three 12-bit 2 MSPS ADCs, two 12-bit DACs, up to ten 16-bit general timers, two 16-bit basic timers plus two 16-bit PWM advanced timers, as well as standard and advanced communication interfaces: up to three SPIs, three I2Cs, four USARTs and four UARTs, two I2Ss, two CANs, a SDIO, a USBFS and an Ethernet. Additional peripherals as TFT-LCD Interface (TLI), EXMC interface with SDRAM extension support, Digital camera interface (DCI), Cryptographic acceleration unit (CAU), Hash acceleration unit (HAU), True random number generator (TRNG) are included. The device operates from a 2.6 to 3.6V power supply and available in –40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization of power consumption, an especially important consideration in low power applications. The above features make GD32F207xx devices suitable for a wide range of interconnection and advanced applications, especially in areas such as industrial control, consumer and handheld equipment, embedded modules, human machine interface, security and alarm systems, POS and electronic payment, automotive navigation and so on. Device information Table 2-1. GD32F207xx devices features and peripheral list   Part Number GD32F207xx   RC RE RG RK VC VE VG VK Flash Fast area (KB) 256 512 384 384 256 512 384 384   Normal area (KB) 0 0 640 2688 0 0 640 2688   Total (KB) 256 512 1024 3072 256 512 1024 3072 SRAM (KB) 128 128 256 256 128 128 256 256 Timers General timer(16- bit) 10 (1-4,8-13) 10 (1-4,8-13) 10 (1-4,8-13) 10 (1-4,8-13) 10 (1-4,8-13) 10 (1-4,8-13) 10 (1-4,8-13) 10 (1-4,8-13)   Advanced timer (16-bit) 2 (0,7) 2 (0,7) 2 (0,7) 2 (0,7) 2 (0,7) 2 (0,7) 2 (0,7) 2 (0,7)   SysTick 1 1 1 1 1 1 1 1   Basic timer (16- bit) 2 (5,6) 2 (5,6) 2 (5,6) 2 (5,6) 2 (5,6) 2 (5,6) 2 (5,6) 2 (5,6)   Watchdog 2 2 2 2 2 2 2 2   RTC 1 1 1 1 1 1 1 1 Connectivity USART 4 4 4 4 4 4 4 4     UART 2 (3-4) 2 (3-4) 2 (3-4) 2 (3-4) 4 (3-4,6-7) 4 (3-4,6-7) 4 (3-4,6-7) 4 (3-4,6-7)   I2C 3 3 3 3 3 3 3 3     SPI/I2S 3/2 (0-2)/(1-2) 3/2 (0-2)/(1-2) 3/2 (0-2)/(1-2) 3/2 (0-2)/(1-2) 3/2 (0-2)/(1-2) 3/2 (0-2)/(1-2) 3/2 (0-2)/(1-2)
兆易创新GD32-GigaDevice-兆易创新代理
产品描述

兆易创新GD32F207ZGT6-GD32 ARM Cortex-M3 Microcontroller

GigaDevice Semiconductor Inc.
GD32F207xx
ARM® Cortex®-M3 32-bit MCU
Datasheet
 

General description

The GD32F207xx device belongs to the performance line of GD32 MCU Family. It is a new 32-bit general-purpose microcontroller based on the ARM® Cortex®-M3 RISC core with best cost-performance ratio in terms of processing capacity, reduced power consumption and peripheral set. The Cortex®-M3 is a next generation processor core which is tightly coupled with a Nested Vectored Interrupt Controller (NVIC), SysTick timer and advanced debug support.
The GD32F207xx device incorporates the ARM® Cortex®-M3 32-bit processor core operating at 120 MHz frequency with flash accesses zero wait states to obtain maximum efficiency. It provides up to 3072 KB on-chip flash memory and 256 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer up to three 12-bit 2 MSPS ADCs, two 12-bit DACs, up to ten 16-bit general timers, two 16-bit basic timers plus two 16-bit PWM advanced timers, as well as standard and advanced communication interfaces: up to three SPIs, three I2Cs, four USARTs and four UARTs, two I2Ss, two CANs, a SDIO, a USBFS and an Ethernet. Additional peripherals as TFT-LCD Interface (TLI), EXMC interface with SDRAM extension support, Digital camera interface (DCI), Cryptographic acceleration unit (CAU), Hash acceleration unit (HAU), True random number generator (TRNG) are included.
The device operates from a 2.6 to 3.6V power supply and available in –40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization of power consumption, an especially important consideration in low power applications.
The above features make GD32F207xx devices suitable for a wide range of interconnection and advanced applications, especially in areas such as industrial control, consumer and handheld equipment, embedded modules, human machine interface, security and alarm systems, POS and electronic payment, automotive navigation and so on.

Device information

Table 2-1. GD32F207xx devices features and peripheral list

 

Part Number

GD32F207xx

 

RC

RE

RG

RK

VC

VE

VG

VK

Flash

Fast area (KB)

256

512

384

384

256

512

384

384

 

Normal area (KB)

0

0

640

2688

0

0

640

2688

 

Total (KB)

256

512

1024

3072

256

512

1024

3072

SRAM (KB)

128

128

256

256

128

128

256

256

Timers

General timer(16-

bit)

10

(1-4,8-13)

10

(1-4,8-13)

10

(1-4,8-13)

10

(1-4,8-13)

10

(1-4,8-13)

10

(1-4,8-13)

10

(1-4,8-13)

10

(1-4,8-13)

 

Advanced timer

(16-bit)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

 

SysTick

1

1

1

1

1

1

1

1

 

Basic timer (16-

bit)

2

(5,6)

2

(5,6)

2

(5,6)

2

(5,6)

2

(5,6)

2

(5,6)

2

(5,6)

2

(5,6)

 

Watchdog

2

2

2

2

2

2

2

2

 

RTC

1

1

1

1

1

1

1

1

Connectivity

USART

4

4

4

4

4

4

4

4

 

 

UART

2

(3-4)

2

(3-4)

2

(3-4)

2

(3-4)

4

(3-4,6-7)

4

(3-4,6-7)

4

(3-4,6-7)

4

(3-4,6-7)

 

I2C

3

3

3

3

3

3

3

3

 

 

SPI/I2S

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

 

SDIO

1

1

1

1

1

1

1

1

 

CAN

2

2

2

2

2

2

2

2

 

USBFS

1

1

1

1

1

1

1

1

 

ENET

1

1

1

1

1

1

1

1

 

TLI

0

0

0

0

1

1

1

1

 

DCI

1

1

1

1

1

1

1

1

 

CAU/HAU

1

1

1

1

1

1

1

1

GPIO

51

51

51

51

82

82

82

82

EXMC/SDRAM

0/0

0/0

0/0

0/0

1/0

1/0

1/0

1/0

 

 

Part Number

GD32F207xx

 

RC

RE

RG

RK

VC

VE

VG

VK

ADC (CHs)

3(16)

3(16)

3(16)

3(16)

3(16)

3(16)

3(16)

3(16)

DAC

2

2

2

2

2

2

2

2

Package

LQFP64

LQFP100

 

 

Part Number

GD32F207xx

 

ZC

ZE

ZG

ZK

IE

IG

IK

Flash

Code area (KB)

256

512

384

384

512

384

384

 

Data area (KB)

0

0

640

2688

0

640

2688

 

Total (KB)

256

512

1024

3072

512

1024

3072

SRAM (KB)

128

128

256

256

128

256

256

Timers

General timer

(16-bit)

10

(1-4,8-13)

10

(1-4,8-13)

10

(1-4,8-13)

10

(1-4,8-13)

10

(1-4,8-13)

10

(1-4,8-13)

10

(1-4,8-13)

 

Advanced timer

(16-bit)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

 

SysTick

1

1

1

1

1

1

1

 

Basic timer (16-

bit)

2

(5,6)

2

(5,6)

2

(5,6)

2

(5,6)

2

(5,6)

2

(5,6)

2

(5,6)

 

Watchdog

2

2

2

2

2

2

2

 

RTC

1

1

1

1

1

1

1

Connectivity

USART

4

4

4

4

4

4

4

 

UART

4

4

4

4

4

4

4

 

I2C

3

3

3

3

3

3

3

 

SPI/I2S

3/2

3/2

3/2

3/2

3/2

3/2

3/2

 

SDIO

1

1

1

1

1

1

1

 

CAN

2

2

2

2

2

2

2

 

USBFS

1

1

1

1

1

1

1

 

ENET

1

1

1

1

1

1

1

 

TLI

1

1

1

1

1

1

1

 

DCI

1

1

1

1

1

1

1

 

CAU/HAU

1

1

1

1

1

1

1

GPIO

114

114

114

114

140

140

140

               

 

 

Part Number

GD32F207xx

 

ZC

ZE

ZG

ZK

IE

IG

IK

EXMC/SDRAM

1/1

1/1

1/1

1/1

1/1

1/1

1/1

ADC (CHs)

3(24)

3(24)

3(24)

3(24)

3(24)

3(24)

3(24)

DAC

2

2

2

2

2

2

2

Package

LQFP144

LQFP176

Memory map

Table 2-2. GD32F207xx memory map

Pre-defined

Regions

 

Bus

 

Address

 

Peripherals

 

External Device

 

 

 

AHB

0xC000 0000 - 0xDFFF FFFF

EXMC - SDRAM

 

 

0xA000 1000 - 0xBFFF FFFF

Reserved

 

 

0xA000 0000 - 0xA000 0FFF

EXMC - SWREG

 

External RAM

 

0x9000 0000 - 0x9FFF FFFF

EXMC - PC CARD

 

 

0x7000 0000 - 0x8FFF FFFF

EXMC - NAND

 

 

0x6000 0000 - 0x6FFF FFFF

EXMC - NOR/PSRAM/SRAM

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Peripheral

 

 

 

 

AHB2

0x5006 0C00 - 0x5FFF FFFF

Reserved

 

 

0x5006 0800 - 0x5006 0BFF

TRNG

 

 

0x 5006 0400 – 0x5006 07FF

HAU

 

 

0x 5006 0000 – 0x5006 03FF

CAU

 

 

0x5005 0400 - 0x5005 FFFF

Reserved

 

 

0x5005 0000 - 0x5005 03FF

DCI

 

 

0x5004 0000 - 0x5004 FFFF

Reserved

 

 

 

 

 

 

 

 

 

 

AHB1

0x5000 0000 - 0x5003 FFFF

USBFS

 

 

0x4002 A000 - 0x4FFF FFFF

Reserved

 

 

0x4002 8000 - 0x4002 9FFF

ENET

 

 

0x4002 3400 - 0x4002 7FFF

Reserved

 

 

0x4002 3000 - 0x4002 33FF

CRC

 

 

0x4002 2400 - 0x4002 2FFF

Reserved

 

 

0x4002 2000 - 0x4002 23FF

FMC

 

 

0x4002 1400 - 0x4002 1FFF

Reserved

 

 

0x4002 1000 - 0x4002 13FF

RCU

 

 

0x4002 0800 - 0x4002 0FFF

Reserved

 

 

0x4002 0400 - 0x4002 07FF

DMA0

 

 

0x4002 0000 - 0x4002 03FF

DMA1

 

 

0x4001 8400 - 0x4001 FFFF

Reserved

 

 

0x4001 8000 - 0x4001 83FF

SDIO

 

 

 

 

 

 

 

APB2

0x4001 7C00 - 0x4001 7FFF

Reserved

 

 

0x4001 7800 - 0x4001 7BFF

GPIOI

 

 

0x4001 7400 - 0x4001 77FF

GPIOH

 

 

0x4001 7000 - 0x4001 73FF

USART5

 

 

0x4001 6C00 - 0x4001 6FFF

Reserved

 

 

0x4001 6800 - 0x4001 6BFF

TLI

 

 

0x4001 5800 - 0x4001 67FF

Reserved

 

 

0x4001 5400 - 0x4001 57FF

TIMER10

 

 

0x4001 5000 - 0x4001 53FF

TIMER9

 

 

0x4001 4C00 - 0x4001 4FFF

TIMER8

 

Pre-defined

Regions

 

Bus

 

Address

 

Peripherals

 

 

0x4001 4000 - 0x4001 4BFF

Reserved

 

 

0x4001 3C00 - 0x4001 3FFF

ADC2

 

 

0x4001 3800 - 0x4001 3BFF

USART0

 

 

0x4001 3400 - 0x4001 37FF

TIMER7

 

 

0x4001 3000 - 0x4001 33FF

SPI0

 

 

0x4001 2C00 - 0x4001 2FFF

TIMER0

 

 

0x4001 2800 - 0x4001 2BFF

ADC1

 

 

0x4001 2400 - 0x4001 27FF

ADC0

 

 

0x4001 2000 - 0x4001 23FF

GPIOG

 

 

0x4001 1C00 - 0x4001 1FFF

GPIOF

 

 

0x4001 1800 - 0x4001 1BFF

GPIOE

 

 

0x4001 1400 - 0x4001 17FF

GPIOD

 

 

0x4001 1000 - 0x4001 13FF

GPIOC

 

 

0x4001 0C00 - 0x4001 0FFF

GPIOB

 

 

0x4001 0800 - 0x4001 0BFF

GPIOA

 

 

0x4001 0400 - 0x4001 07FF

EXTI

 

 

0x4001 0000 - 0x4001 03FF

AFIO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APB1

0x4000 C400 - 0x4000 FFFF

Reserved

 

 

0x4000 C000 - 0x4000 C3FF

I2C2

 

 

0x4000 8000 - 0x4000 BFFF

Reserved

 

 

0x4000 7C00 - 0x4000 7FFF

UART7

 

 

0x4000 7800 - 0x4000 7BFF

UART6

 

 

0x4000 7400 - 0x4000 77FF

DAC

 

 

0x4000 7000 - 0x4000 73FF

PMU

 

 

0x4000 6C00 - 0x4000 6FFF

BKP

 

 

0x4000 6800 - 0x4000 6BFF

CAN1

 

 

0x4000 6400 - 0x4000 67FF

CAN0

 

 

0x4000 5C00 - 0x4000 63FF

USB/CAN shared

 

 

0x4000 5800 - 0x4000 5BFF

I2C1

 

 

0x4000 5400 - 0x4000 57FF

I2C0

 

 

0x4000 5000 - 0x4000 53FF

UART4

 

 

0x4000 4C00 - 0x4000 4FFF

UART3

 

 

0x4000 4800 - 0x4000 4BFF

USART2

 

 

0x4000 4400 - 0x4000 47FF

USART1

 

 

0x4000 4000 - 0x4000 43FF

Reserved

 

 

0x4000 3C00 - 0x4000 3FFF

SPI2/I2S2

 

 

0x4000 3800 - 0x4000 3BFF

SPI1/I2S1

 

 

0x4000 3400 - 0x4000 37FF

Reserved

 

 

0x4000 3000 - 0x4000 33FF

FWDGT

 

 

0x4000 2C00 - 0x4000 2FFF

WWDGT

 

Pre-defined

Regions

 

Bus

 

Address

 

Peripherals

 

 

0x4000 2800 - 0x4000 2BFF

RTC

 

 

0x4000 2400 - 0x4000 27FF

Reserved

 

 

0x4000 2000 - 0x4000 23FF

TIMER13

 

 

0x4000 1C00 - 0x4000 1FFF

TIMER12

 

 

0x4000 1800 - 0x4000 1BFF

TIMER11

 

 

0x4000 1400 - 0x4000 17FF

TIMER6

 

 

0x4000 1000 - 0x4000 13FF

TIMER5

 

 

0x4000 0C00 - 0x4000 0FFF

TIMER4

 

 

0x4000 0800 - 0x4000 0BFF

TIMER3

 

 

0x4000 0400 - 0x4000 07FF

TIMER2

 

 

0x4000 0000 - 0x4000 03FF

TIMER1

 

 

SRAM

 

 

AHB

0x2004 0000 - 0x3FFF FFFF

Reserved

 

 

0x2002 0000 - 0x2003 FFFF

SRAM2(128KB)

 

 

0x2001 C000 - 0x2001 FFFF

SRAM1(16KB)

 

 

0x2000 0000 - 0x2001 BFFF

SRAM0(112KB)

 

 

 

 

 

Code

 

 

 

 

 

AHB

0x1FFF F810 - 0x1FFF FFFF

Reserved

 

 

0x1FFF F800 - 0x1FFF F80F

Option Bytes

 

 

0x1FFF B000 - 0x1FFF F7FF

System memory

 

 

0x0830 0000 - 0x1FFF AFFF

Reserved

 

 

0x0800 0000 - 0x082F FFFF

Main Flash(3072KB)

 

 

 

0x0000 0000 - 0x07FF FFFF

Aliased to Flash or system memory according to BOOT

pins configuration

GD32F207Ix LQFP176 pin definitions

Table 2-3. GD32F207Ix LQFP176 pin definitions

Pin

Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

PE2

 

1

 

I/O

 

5VT

Default: PE2

Alternate: TRACECK, EXMC_A23 Remap: ENET_MII_TXD3

 

PE3

 

2

 

I/O

 

5VT

Default: PE3

Alternate: TRACED0, EXMC_A19

 

PE4

 

3

 

I/O

 

5VT

Default: PE4

Alternate:TRACED1, EXMC_A20 Remap: DCI_D4, TLI_B0

 

PE5

 

4

 

I/O

 

5VT

Default: PE5 Alternate:TRACED2, EXMC_A21

Remap: TIMER8_CH0, DCI_D6, TLI_G0

 

PE6

 

5

 

I/O

 

5VT

Default: PE6 Alternate:TRACED3, EXMC_A22

Remap: TIMER8_CH1, DCI_D7, TLI_G1

VBAT

6

P

 

Default: VBAT

PI8

7

I/O

 

Default: PI8

PC13- TAMPE R-RTC

 

8

 

I/O

 

5VT

 

Default: PC13

Alternate: TAMPER-RTC

PC14- OSC32

IN

 

9

 

I/O

 

 

Default: PC14 Alternate: OSC32IN

PC15- OSC32

OUT

 

10

 

I/O

 

 

Default: PC15 Alternate: OSC32OUT

 

PI9

 

11

 

I/O

 

5VT

Default: PI9

Alternate: EXMC_D30

Remap: TLI_VSYNC, CAN0_RX

 

PI10

 

12

 

I/O

 

5VT

Default: PI10 Alternate: EXMC_D31

Remap: TLI_HSYNC, ENET_MII_RX_ER

PI11

13

I/O

5VT

Default: PI11

VSS

14

P

 

Default: VSS

VDD

15

P

 

Default: VDD

 

PF0

 

16

 

I/O

 

5VT

Default: PF0

Alternate: EXMC_A0 Remap: I2C1_SDA

PF1

17

I/O

5VT

Default: PF1

Pin

Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

 

 

 

Alternate: EXMC_A1

Remap: I2C1_SCL

 

PF2

 

18

 

I/O

 

5VT

Default: PF2 Alternate: EXMC_A2

Remap: I2C1_SMBA

 

PF3

 

19

 

I/O

 

5VT

Default: PF3

Alternate: EXMC_A3, ADC2_IN9

 

PF4

 

20

 

I/O

 

5VT

Default: PF4

Alternate: EXMC_A4, ADC2_IN14

 

PF5

 

21

 

I/O

 

5VT

Default: PF5

Alternate: EXMC_A5, ADC2_IN15

VSS_5

22

P

 

Default: VSS_5

VDD_5

23

P

 

Default: VDD_5

 

PF6

 

24

 

I/O

 

Default: PF6

Alternate: ADC2_IN4, EXMC_NIORD Remap: TIMER9_CH0, UART6_RX

 

PF7

 

25

 

I/O

 

Default: PF7

Alternate: ADC2_IN5, EXMC_NREG Remap: TIMER10_CH0, UART6_TX

 

PF8

 

26

 

I/O

 

Default: PF8

Alternate: ADC2_IN6, EXMC_NIOWR Remap: TIMER12_CH0

 

PF9

 

27

 

I/O

 

Default: PF9

Alternate: ADC2_IN7, EXMC_CD Remap: TIMER13_CH0

 

PF10

 

28

 

I/O

 

Default: PF10

Alternate: ADC2_IN8, EXMC_INTR Remap: DCI_D11, TLI_DE

 

OSCIN

 

29

 

I

 

Default: OSCIN

Remap: PD0, PH0

OSCO

UT

 

30

 

O

 

Default: OSCOUT Remap: PD1, PH1

NRST

31

I/O

 

Default: NRST

 

PC0

 

32

 

I/O

 

Default: PC0

Alternate: ADC012_IN10 Remap: EXMC_SDNWE

 

PC1

 

33

 

I/O

 

Default: PC1

Alternate: ADC012_IN11, ENET_MDC

 

PC2

 

34

 

I/O

 

Default: PC2

Alternate: ADC012_IN12, ENET_MII_TXD2 Remap: EXMC_SDNE0, SPI1_MISO

 

PC3

 

35

 

I/O

 

Default: PC3

Alternate: ADC012_IN13, ENET_MII_TX_CLK Remap: EXMC_SDCKE0, SPI1_MOSI, I2S1_SD

VSSA

36

P

 

Default: VSSA

Pin

Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

VREF-

37

P

 

Default: VREF-

VREF+

38

P

 

Default: VREF+

VDDA

39

P

 

Default: VDDA

 

PA0- WKUP

 

 

40

 

 

I/O

 

Default: PA0

Alternate: WKUP, USART1_CTS, ADC012_IN0, TIMER1_CH0, TIMER1_ETI, TIMER4_CH0, TIMER7_ETI, ENET_MII_CRS

Remap: UART3_TX

 

 

PA1

 

 

41

 

 

I/O

 

Default: PA1

Alternate: USART1_RTS, ADC012_IN1, TIMER1_CH1, TIMER4_CH1,ENET_MII_RX_CLK, ENET_RMII_REF_CLK

Remap: UART3_RX

 

PA2

 

42

 

I/O

 

Default: PA2

Alternate: USART1_TX, ADC012_IN2, TIMER1_CH2, TIMER4_CH2, TIMER8_CH0, ENET_MDIO, SPI0_IO3

 

PH2

 

43

 

I/O

 

5VT

Default: PH2

Alternate: EXMC_SDCKE0 Remap: TLI_R0, ENET_MII_CRS

 

PH3

 

44

 

I/O

 

5VT

Default: PH3

Alternate: EXMC_SDNE0 Remap: TLI_R1, ENET_MII_COL

 

PH4

 

45

 

I/O

 

5VT

Default: PH4

Remap: I2C1_SCL, TLI_R0

 

PH5

 

46

 

I/O

 

5VT

Default: PH5

Alternate: EXMC_SDNWE Remap: I2C1_SDA

 

 

PA3

 

 

47

 

 

I/O

 

Default: PA3

Alternate: USART1_RX, ADC012_IN3, TIMER1_CH3, TIMER4_CH3, TIMER8_CH1, ENET_MII_COL, SPI0_IO4

Remap: TLI_B5

VSS_4

48

P

 

Default: VSS_4

VDD_4

49

P

 

Default: VDD_4

 

 

PA4

 

 

50

 

 

I/O

 

Default: PA4

Alternate: SPI0_NSS, USART1_CK, DAC_OUT0, ADC01_IN4, DCI_HSYNC

Remap: SPI2_NSS, I2S2_WS, TLI_VSYNC

 

PA5

 

51

 

I/O

 

Default: PA5

Alternate: SPI0_SCK, ADC01_IN5, DAC_OUT1

Remap: TIMER1_CH0, TIMER1_ETI, TIMER7_CH0_ON

 

 

PA6

 

 

52

 

 

I/O

 

Default: PA6

Alternate: SPI0_MISO, ADC01_IN6, TIMER2_CH0, TIMER7_BRKIN, TIMER12_CH0, DCI_PIXCLK Remap: TIMER0_BRKIN, TLI_G2

 

PA7

 

53

 

I/O

 

Default: PA7

Alternate: SPI0_MOSI, ADC01_IN7, TIMER2_CH1, TIMER7_CH0_ON, TIMER13_CH0, ENET_MII_RX_DV,

 

Pin

Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

 

 

 

ENET_RMII_CRS_DV

Remap: TIMER0_CH0_ON

 

PC4

 

54

 

I/O

 

Default: PC4

Alternate: ADC01_IN14, ENET_MII_RXD0. ENET_RMII_RXD0

 

PC5

 

55

 

I/O

 

Default: PC5

Alternate: ADC01_IN15, ENET_MII_RXD1, ENET_RMII_RXD1

 

 

PB0

 

 

56

 

 

I/O

 

Default: PB0

Alternate: ADC01_IN8, TIMER2_CH2, TIMER7_CH1_ON, ENET_MII_RXD2

Remap: TIMER0_CH1_ON, TLI_R3

 

 

PB1

 

 

57

 

 

I/O

 

Default: PB1

Alternate: ADC01_IN9, TIMER2_CH3, TIMER7_CH2_ON, ENET_MII_RXD3

Remap: TIMER0_CH2_ON, TLI_R6

PB2

58

I/O

5VT

Default: PB2, BOOT1

 

PF11

 

59

 

I/O

 

5VT

Default: PF11

Alternate: EXMC_NIOS16, DCI_D12, EXMC_SDNRAS

 

PF12

 

60

 

I/O

 

5VT

Default: PF12

Alternate: EXMC_A6

VSS_6

61

P

 

Default: VSS_6

VDD_6

62

P

 

Default: VDD_6

 

PF13

 

63

 

I/O

 

5VT

Default: PF13 Alternate: EXMC_A7

 

PF14

 

64

 

I/O

 

5VT

Default: PF14

Alternate: EXMC_A8

 

PF15

 

65

 

I/O

 

5VT

Default: PF15 Alternate: EXMC_A9

 

PG0

 

66

 

I/O

 

5VT

Default: PG0

Alternate: EXMC_A10

 

PG1

 

67

 

I/O

 

5VT

Default: PG1 Alternate: EXMC_A11

 

PE7

 

68

 

I/O

 

5VT

Default: PE7

Alternate: EXMC_D4, UART6_RX Remap: TIMER0_ETI

 

PE8

 

69

 

I/O

 

5VT

Default: PE8

Alternate: EXMC_D5, UART6_TX Remap: TIMER0_CH0_ON

 

PE9

 

70

 

I/O

 

5VT

Default: PE9 Alternate: EXMC_D6

Remap: TIMER0_CH0

VSS_7

71

P

 

Default: VSS_7

VDD_7

72

P

 

Default: VDD_7

 

PE10

 

73

 

I/O

 

5VT

Default: PE10 Alternate: EXMC_D7

Remap: TIMER0_CH1_ON

 

Pin

Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

PE11

 

74

 

I/O

 

5VT

Default: PE11 Alternate: EXMC_D8

Remap: TIMER0_CH1, TLI_G3

 

PE12

 

75

 

I/O

 

5VT

Default: PE12 Alternate: EXMC_D9

Remap: TIMER0_CH2_ON, TLI_B4

 

PE13

 

76

 

I/O

 

5VT

Default: PE13 Alternate: EXMC_D10

Remap: TIMER0_CH2, TLI_DE

 

PE14

 

77

 

I/O

 

5VT

Default: PE14 Alternate: EXMC_D11

Remap: TIMER0_CH3, TLI_ PIXCLK

 

PE15

 

78

 

I/O

 

5VT

Default: PE15 Alternate: EXMC_D12

Remap: TIMER0_BRKIN, TLI_R7

 

PB10

 

79

 

I/O

 

5VT

Default: PB10

Alternate: I2C1_SCL, USART2_TX, ENET_MII_RX_ER Remap: TIMER1_CH2, TLI_G4, SPI1_SCK, I2S1_CK

 

 

PB11

 

 

80

 

 

I/O

 

 

5VT

Default: PB11

Alternate: I2C1_SDA, USART2_RX, ENET_MII_TX_EN, ENET_RMII_TX_EN

Remap: TIMER1_CH3, TLI_G5

VSS_1

81

P

 

Default: VSS_1

VDD_1

82

P

 

Default: VDD_1

 

PH6

 

83

 

I/O

 

5VT

Default: PH6

Alternate: EXMC_SDNE1

Remap: I2C1_SMBA, TIMER11_CH0, ENET_MII_RXD2, DCI_D8

 

PH7

 

84

 

I/O

 

5VT

Default: PH7

Alternate: EXMC_SDCKE1

Remap: I2C2_SCL, ENET_MII_RXD3, DCI_D9

 

PH8

 

85

 

I/O

 

5VT

Default: PH8 Alternate: EXMC_D16

Remap: TLI_R2, I2C2_SDA, DCI_HSYNC

 

PH9

 

86

 

I/O

 

5VT

Default: PH9 Alternate: EXMC_D17

Remap: TLI_R3, I2C2_SMBA, TIMER11_CH1, DCI_D0

 

PH10

 

87

 

I/O

 

5VT

Default: PH10 Alternate: EXMC_D18

Remap: TLI_R4, TIMER4_CH0, DCI_D1

 

PH11

 

88

 

I/O

 

5VT

Default: PH11 Alternate: EXMC_D19

Remap: TLI_R5, TIMER4_CH1, DCI_D2

 

PH12

 

89

 

I/O

 

5VT

Default: PH12 Alternate: EXMC_D20

Remap: TLI_R6, TIMER4_CH2, DCI_D3

VSS

90

P

 

Default: VSS

 

Pin

Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

VDD

91

P

 

Default: VDD

 

PB12

 

92

 

I/O

 

5VT

Default: PB12

Alternate: SPI1_NSS, I2C1_SMBA, USART2_CK, TIMER0_BRKIN, I2S1_WS, CAN1_RX, ENET_MII_TXD0, ENET_RMII_TXD0

 

PB13

 

93

 

I/O

 

5VT

Default: PB13

Alternate: SPI1_SCK, USART2_CTS, TIMER0_CH0_ON, I2S1_CK, CAN1_TX , ENET_MII_TXD1, ENET_RMII_TXD1

 

PB14

 

94

 

I/O

 

5VT

Default: PB14

Alternate: SPI1_MISO, USART2_RTS, TIMER0_CH1_ON, TIMER11_CH0

 

PB15

 

95

 

I/O

 

5VT

Default: PB15

Alternate: SPI1_MOSI, TIMER0_CH2_ON, I2S1_SD, TIMER11_CH1

 

PD8

 

96

 

I/O

 

5VT

Default: PD8 Alternate: EXMC_D13

Remap: USART2_TX, ENET_MII_RX_DV, ENET_RMII_CRS_DV

 

PD9

 

97

 

I/O

 

5VT

Default: PD9 Alternate: EXMC_D14

Remap: USART2_RX, ENET_MII_RXD0, ENET_RMII_RXD0

 

 

PD10

 

 

98

 

 

I/O

 

 

5VT

Default: PD10 Alternate: EXMC_D15

Remap: USART2_CK, ENET_MII_RXD1, ENET_RMII_RXD1,

TLI_B3

 

PD11

 

99

 

I/O

 

5VT

Default: PD11 Alternate: EXMC_A16

Remap: USART2_CTS, ENET_MII_RXD2

 

PD12

 

100

 

I/O

 

5VT

Default: PD12 Alternate: EXMC_A17

Remap: TIMER3_CH0, USART2_RTS

 

PD13

 

101

 

I/O

 

5VT

Default: PD13 Alternate: EXMC_A18

Remap: TIMER3_CH1

VSS_8

102

P

 

Default: VSS_8

VDD_8

103

P

 

Default: VDD_8

 

PD14

 

104

 

I/O

 

5VT

Default: PD14

Alternate: EXMC_D0 Remap: TIMER3_CH2

 

PD15

 

105

 

I/O

 

5VT

Default: PD15

Alternate: EXMC_D1 Remap: TIMER3_CH3

 

PG2

 

106

 

I/O

 

5VT

Default: PG2

Alternate: EXMC_A12

 

PG3

 

107

 

I/O

 

5VT

Default: PG3 Alternate: EXMC_A13

 

PG4

 

108

 

I/O

 

5VT

Default: PG4

Alternate: EXMC_A14, EXMC_BA0

 

Pin

Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

PG5

 

109

 

I/O

 

5VT

Default: PG5

Alternate: EXMC_A15, EXMC_BA1

 

PG6

 

110

 

I/O

 

5VT

Default: PG6 Alternate: EXMC_INT1

Remap: DCI_D12, TLI_R7

 

PG7

 

111

 

I/O

 

5VT

Default: PG7

Alternate: EXMC_INT2, DCI_D13 Remap: USART5_CK, TLI_ PIXCLK

 

PG8

 

112

 

I/O

 

5VT

Default: PG8

Alternate: EXMC_SDCLK, USART5_RTS Remap: ENET_PPS_OUT

VSS_9

113

P

 

Default: VSS_9

VDD_9

114

P

 

Default: VDD_9

 

PC6

 

115

 

I/O

 

5VT

Default: PC6

Alternate: I2S1_MCK, TIMER7_CH0, SDIO_D6, USART5_TX Remap: TIMER2_CH0, DCI_D0, TLI_HSYNC

 

PC7

 

116

 

I/O

 

5VT

Default: PC7

Alternate: I2S2_MCK, TIMER7_CH1, SDIO_D7, USART5_RX Remap: TIMER2_CH1, DCI_D1, TLI_G6

 

PC8

 

117

 

I/O

 

5VT

Default: PC8

Alternate: TIMER7_CH2, SDIO_D0, DCI_D2, USART5_CK

Remap: TIMER2_CH2

 

PC9

 

118

 

I/O

 

5VT

Default: PC9

Alternate: TIMER7_CH3, SDIO_D1, DCI_D3, CK_OUT1 Remap: TIMER2_CH3, I2C2_SDA

 

 

PA8

 

 

119

 

 

I/O

 

 

5VT

Default: PA8

Alternate: USART0_CK, TIMER0_CH0, CK_OUT0, VCORE, USBFS_SOF

Remap: TLI_R6, I2C2_SCL

 

PA9

 

120

 

I/O

 

5VT

Default: PA9

Alternate: USART0_TX, TIMER0_CH1, USBFS_VBUS, DCI_D0

Remap: I2C2_SMBAI

 

PA10

 

121

 

I/O

 

5VT

Default: PA10

Alternate: USART0_RX, TIMER0_CH2, USBFS_ID, DCI_D1

 

PA11

 

122

 

I/O

 

5VT

Default: PA11

Alternate: USART0_CTS, CAN0_RX, USBFS_DM, TIMER0_CH3

Remap: TLI_R4

 

PA12

 

123

 

I/O

 

5VT

Default: PA12

Alternate: USART0_RTS, USBFS_DP, CAN0_TX, TIMER0_ETI

Remap: TLI_R5

 

PA13

 

124

 

I/O

 

5VT

Default: JTMS, SWDIO

Remap: PA13

NC

125

 

 

-

VSS_2

126

P

 

Default: VSS_2

VDD_2

127

P

 

Default: VDD_2

 

Pin

Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

PH13

 

128

 

I/O

 

5VT

Default: PH13 Alternate: EXMC_D21

Remap: TLI_G2, TIMER7_CH0_ON, CAN0_TX

 

PH14

 

129

 

I/O

 

5VT

Default: PH14 Alternate: EXMC_D22

Remap: TLI_G3, TIMER7_CH1_ON, DCI_D4

 

PH15

 

130

 

I/O

 

5VT

Default: PH15 Alternate: EXMC_D23

Remap: TLI_G4, TIMER7_CH2_ON, DCI_D11

 

PI0

 

131

 

I/O

 

5VT

Default: PI0

Alternate: EXMC_D24

Remap: TLI_G5, TIMER4_CH3, SPI1_NSS, I2S1_WS, DCI_D13

 

PI1

 

132

 

I/O

 

5VT

Default: PI1

Alternate: EXMC_D25

Remap: TLI_G6, SPI1_SCK, I2S1_CK, DCI_D8

 

PI2

 

133

 

I/O

 

5VT

Default: PI2

Alternate: EXMC_D26

Remap: TLI_G7, TIMER7_CH3, SPI1_MISO, DCI_D9

 

PI3

 

134

 

I/O

 

5VT

Default: PI3

Alternate: EXMC_D27

Remap: TIMER7_ETI, SPI1_MOSI, I2S1_SD, TLI_R1, DCI_D10

VSS

135

P

 

Default: VSS

VDD

136

P

 

Default: VDD

 

PA14

 

137

 

I/O

 

5VT

Default: JTCK, SWCLK Remap: PA14

 

PA15

 

138

 

I/O

 

5VT

Default: JTDI

Alternate: SPI2_NSS, I2S2_WS

Remap: TIMER1_CH0, TIMER1_ETI, PA15, SPI0_NSS

 

PC10

 

139

 

I/O

 

5VT

Default: PC10

Alternate: UART3_TX, SDIO_D2, DCI_D8

Remap: USART2_TX, SPI2_SCK, I2S2_CK, TLI_R2

 

PC11

 

140

 

I/O

 

5VT

Default: PC11

Alternate: UART3_RX, SDIO_D3, DCI_D4 Remap: USART2_RX, SPI2_MISO

 

PC12

 

141

 

I/O

 

5VT

Default: PC12

Alternate: UART4_TX, SDIO_CK, DCI_D9 Remap: USART2_CK, SPI2_MOSI, I2S2_SD

 

PD0

 

142

 

I/O

 

5VT

Default: PD0 Alternate: EXMC_D2

Remap: CAN0_RX, OSCIN

 

PD1

 

143

 

I/O

 

5VT

Default: PD1 Alternate: EXMC_D3

Remap: CAN0_TX, OSCOUT

 

PD2

 

144

 

I/O

 

5VT

Default: PD2

Alternate: TIMER2_ETI, UART4_RX, SDIO_CMD, DCI_D11

PD3

145

I/O

5VT

Default: PD3

 

 

Pin

Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

 

 

 

Alternate: EXMC_CLK

Remap: USART1_CTS, DCI_D5, TLI_G7, SPI1_SCK, I2S1_CK

 

PD4

 

146

 

I/O

 

5VT

Default: PD4 Alternate: EXMC_NOE

Remap: USART1_RTS

 

PD5

 

147

 

I/O

 

5VT

Default: PD5

Alternate: EXMC_NWE Remap: USART1_TX

VSS_10

148

P

 

Default: VSS_10

VDD_10

149

P

 

Default: VDD_10

 

PD6

 

150

 

I/O

 

5VT

Default: PD6

Alternate: EXMC_NWAIT

Remap: USART1_RX, DCI_D10, TLI_B2, SPI2_MOSI, I2S2_SD

 

PD7

 

151

 

I/O

 

5VT

Default: PD7

Alternate: EXMC_NE0, EXMC_NCE1 Remap: USART1_CK

 

PG9

 

152

 

I/O

 

5VT

Default: PG9

Alternate: EXMC_NE1, EXMC_NCE2 Remap: DCI_VSYNC, USART5_RX

 

PG10

 

153

 

I/O

 

5VT

Default: PG10

Alternate: EXMC_NCE3_0, EXMC_NE2 Remap: DCI_D2, TLI_G3, TLI_B2

 

PG11

 

154

 

I/O

 

5VT

Default: PG11

Alternate: EXMC_NCE3_1

Remap: DCI_D3, TLI_B3, ENET_MII_TX_EN, ENET_RMII_TX_EN

 

PG12

 

155

 

I/O

 

5VT

Default: PG12 Alternate: EXMC_NE3

Remap: USART5_RTS, TLI_B4, TLI_B1

 

PG13

 

156

 

I/O

 

5VT

Default: PG13 Alternate: EXMC_A24

Remap: USART5_CTS, ENET_MII_TXD0, ENET_RMII_TXD0

 

PG14

 

157

 

I/O

 

5VT

Default: PG14 Alternate: EXMC_A25

Remap: USART5_TX, ENET_MII_TXD1, ENET_RMII_TXD1

VSS_11

158

P

 

Default: VSS_10

VDD_11

159

P

 

Default: VDD_10

 

PG15

 

160

 

I/O

 

5VT

Default: PG15

Alternate: EXMC_SDNCAS, USART5_CTS Remap: DCI_D13

 

PB3

 

161

 

I/O

 

5VT

Default: JTDO Alternate:SPI2_SCK, I2S2_CK

Remap: PB3, TRACESWO, TIMER1_CH1, SPI0_SCK

 

PB4

 

162

 

I/O

 

5VT

Default: JNTRST Alternate: SPI2_MISO

Remap: TIMER2_CH0, PB4, SPI0_MISO

 

Pin

Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

 

PB5

 

 

163

 

 

I/O

 

Default: PB5

Alternate: I2C0_SMBA, SPI2_MOSI, I2S2_SD, ENET_PPS_OUT, DCI_D10

Remap: TIMER2_CH1, SPI0_MOSI, CAN1_RX, EXMC_SDCKE1

 

PB6

 

164

 

I/O

 

5VT

Default: PB6

Alternate: I2C0_SCL, TIMER3_CH0, DCI_D5

Remap: USART0_TX, CAN1_TX, EXMC_SDNE1, SPI0_IO3

 

PB7

 

165

 

I/O

 

5VT

Default: PB7

Alternate: I2C0_SDA , TIMER3_CH1, EXMC_NL, DCI_VSYNC Remap: USART0_RX, SPI0_IO4

BOOT0

166

I

 

Default: BOOT0

 

 

PB8

 

 

167

 

 

I/O

 

 

5VT

Default: PB8

Alternate: TIMER3_CH2, TIMER9_CH0, ENET_MII_TXD3, SDIO_D4, DCI_D6

Remap: I2C0_SCL, CAN0_RX, TLI_B6

 

PB9

 

168

 

I/O

 

5VT

Default: PB9

Alternate: TIMER3_CH3, TIMER10_CH0, SDIO_D5, DCI_D7 Remap: I2C0_SDA, CAN0_TX, TLI_B7, SPI1_NSS, I2S1_WS

 

PE0

 

169

 

I/O

 

5VT

Default: PE0

Alternate: TIMER3_ETI, EXMC_NBL0, UART7_RX

Remap: DCI_D2

 

PE1

 

170

 

I/O

 

5VT

Default: PE1

Alternate: EXMC_NBL1, UART7_TX Remap: DCI_D3

VSS_3

171

P

 

Default: VSS_3

VDD_3

172

P

 

Default: VDD_3

 

PI4

 

173

 

I/O

 

5VT

Default: PI4

Alternate: EXMC_NBL2

Remap: TLI_B4, TIMER7_BRKIN, DCI_D5

 

PI5

 

174

 

I/O

 

5VT

Default: PI5

Alternate: EXMC_NBL3

Remap: TLI_B5, TIMER7_CH0, DCI_VSYNC

 

PI6

 

175

 

I/O

 

5VT

Default: PI6

Alternate: EXMC_D28

Remap: TLI_B6, TIMER7_CH1, DCI_D6

 

PI7

 

176

 

I/O

 

5VT

Default: PI7

Alternate: EXMC_D29

Remap: TLI_B7, TIMER7_CH2, DCI_D7

Notes:
(1)Type: I = input, O = output, P = power.
(2)I/O Level: 5VT = 5 V tolerant.
 

ARM® Cortex®-M3 core

The Cortex®-M3 processor is the latest generation of ARM® processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.
32-bit ARM® Cortex®-M3 processor core
Up to 120 MHz operation frequency
Single-cycle multiplication and hardware divider
Integrated Nested Vectored Interrupt Controller (NVIC)
24-bit SysTick timer

The Cortex®-M3 processor is based on the ARMv7 architecture and supports both Thumb and Thumb-2 instruction sets. Some system peripherals listed below are also provided by Cortex®-M3:
Internal Bus Matrix connected with ICode bus, DCode bus, system bus, Private Peripheral Bus (PPB) and debug accesses (AHB-AP)
Nested Vectored Interrupt Controller (NVIC)
Flash Patch and Breakpoint (FPB)
Data Watchpoint and Trace (DWT)
Instrument Trace Macrocell (ITM)
Memory Protection Unit (MPU)
Serial Wire JTAG Debug Port (SWJ-DP)
Trace Port Interface Unit (TPIU)


On-chip memory

Up to 3072 Kbytes of flash memory, including code flash and data flash
Up to 256 Kbytes of SRAM

The ARM® Cortex®-M3 processor is structured in Harvard architecture which can use separate buses to fetch instructions and load/store data. 3072 Kbytes of inner flash at most, which includes code flash and data flash is available for storing programs and data, and accessed (R/W) at CPU clock speed with zero wait states. Up to 256 Kbytes of inner SRAM is composed of SRAM0, SRAM1, and SRAM2 that can be accessed at same time. Table 2-2. GD32F207xx memory map shows the memory map of the GD32F207xx series of devices, including flash, SRAM, peripheral, and other pre-defined regions.

Clock, reset and supply management

Internal 8 MHz factory-trimmed RC and external 3 to 25 MHz crystal oscillator
Internal 40 KHz RC calibrated oscillator and external 32.768 KHz crystal oscillator
Integrated system clock PLL
2.6 to 3.6 V application supply and I/Os
Supply Supervisor: POR (Power On Reset), PDR (Power Down Reset), and low voltage detector (LVD)
The Clock Control Unit (CCU) provides a range of oscillator and clock functions. These include speed internal RC oscillator and external crystal oscillator, high speed and low speed two types. Several prescalers allow the frequency configuration of the AHB and two APB domains. The maximum frequency of the AHB/APB2/APB1 domains is 120/120/60 MHz. See Figure 2-6. GD32F207xx clock tree for details on the clock tree.
The Reset Control Unit (RCU) controls three kinds of reset: system reset resets the processor core and peripheral IP components. Power-on reset (POR) and power-down reset (PDR) are always active, and ensures proper operation starting from 2.6 V and down to 1.8V. The device remains in reset mode when VDD is below a specified threshold. The embedded low voltage detector (LVD) monitors the power supply, compares it to the voltage threshold and generates an interrupt as a warning message for leading the MCU into security.
Power supply schemes:
VDD range: 2.6 to 3.6 V, external power supply for I/Os and the internal regulator. Provided externally through VDD pins.
VSSA, VDDA range: 2.6 to 3.6 V, external analog power supplies for ADC, reset blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.
VBAT range: 1.8 to 3.6 V, power supply for RTC, external clock 32 KHz oscillator and backup registers (through power switch) when VDD is not present.

Boot modes

At startup, boot pins are used to select one of three boot options:
Boot from main flash memory (default)
Boot from system memory
Boot from on-chip SRAM

The boot loader is located in the internal boot ROM memory (system memory). It is used to reprogram the flash memory by using USART0 (PA9 and PA10), USART1 (PD5 and PD6) and USB (PA9, PA10, PA11 and PA12). It also can be used to transfer and update the flash memory code, the data and the vector table sections. In default condition, boot from bank 0 of flash memory is selected. It also supports to boot from bank 1 of flash memory by setting a bit in option bytes.

Power saving modes

The MCU supports three kinds of power saving modes to achieve even lower power consumption. They are sleep mode, deep-sleep mode, and standby mode. These operating modes reduce the power consumption and allow the application to achieve the best balance between the CPU operating time, speed and power consumption.
Sleep mode
In sleep mode, only the clock of CPU core is off. All peripherals continue to operate and any interrupt/event can wake up the system.
Deep-sleep mode
In deep-sleep mode, all clocks in the 1.2V domain are off, and all of the high speed crystal oscillator (IRC8M, HXTAL) and PLL are disabled. Only the contents of SRAM and registers are retained. Any interrupt or wakeup event from EXTI lines can wake up the system from the deep-sleep mode including the 16 external lines, the RTC alarm, the LVD output, the Ethernet wakeup and USB wakeup. When exiting the deep-sleep mode, the IRC8M is selected as the system clock.
Standby mode
In standby mode, the whole 1.2V domain is power off, the LDO is shut down, and all of IRC8M, HXTAL and PLL are disabled. The contents of SRAM and registers (except backup registers) are lost. There are four wakeup sources for the standby mode, including the external reset from NRST pin, the RTC alarm, the FWDGT reset, and the rising edge on WKUP pin.

Analog to digital converter (ADC)

12-bit SAR ADC engine with up to 2 MSPS conversion rate
12-bit, 10-bit, 8-bit or 6-bit configurable resolution
Hardware oversampling ratio adjustable from 2 to 256x improves resolution to 16-bit
Conversion range: VSSA to VDDA (2.6 to 3.6 V)
Temperature sensor

Up to three 12-bit 2 MSPS multi-channel ADC are integrated in the device. It is a total of up to 16 multiplexed external channels with 2 internal channels for temperature sensor and voltage reference measurement. The conversion range is between 2.6 V < VDDA < 3.6 V. An on-chip 16-bit hardware oversample scheme improves performances while off-loading the related computational burden from the MCU. An analog watchdog block can be used to detect the channels, which are required to remain within a specific threshold window. A configurable channel management block of analog inputs also can be used to perform conversions in single, continuous, scan or discontinuous mode to support more advanced usages.
The ADC can be triggered from the events generated by the general level 0 timers (TIMERx) and the advanced timers (TIMER0 and TIMER7) with internal connection. The temperature sensor can be used to generate a voltage that varies linearly with temperature. It is internally

connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

Digital to analog converter (DAC)

12-bit DAC converter of independent output channel
8-bit or 12-bit mode in conjunction with the DMA controller

The 12-bit buffered DAC channel is used to generate variable analog outputs. The DAC is designed with integrated resistor strings structure. The DAC channels can be triggered by the timer update outputs or EXTI with DMA support. The maximum output value of the DAC is VREF+.

DMA

14 channels DMA controller and each channel are configurable (7 for DMA0 and 7 for DMA1)
Peripherals supported: Timers, ADC, SPIs, I2Cs, USARTs, DAC, I2S, SDIO, DCI, CAU and HAU
The flexible general-purpose DMA controllers provide a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other system functions. Three types of access method are supported: peripheral to memory, memory to peripheral, memory to memory.
Each channel is connected to fixed hardware DMA requests. The priorities of DMA channel requests are determined by software configuration and hardware channel number. Transfer size of source and destination are independent and configurable.

General-purpose inputs/outputs (GPIOs)

Up to 140 fast GPIOs, all mappable on 16 external interrupt lines
Analog input/output configurable
Alternate function input/output configurable

There are up to 140 general purpose I/O pins (GPIO) in GD32F207xx, named PA0 ~ PA15, PB0 ~ PB15, PC0 ~ PC15, PD0 ~ PD15, PE0 ~ PE15, PF0 ~ PF15, PG0 ~ PG15, PH0 ~
PH15 and PI0 ~ PI11 to implement logic input/output functions. Each of the GPIO ports has related control and configuration registers to satisfy the requirements of specific applications. The external interrupts on the GPIO pins of the device have related control and configuration registers in the Interrupt/event controller (EXTI). The GPIO ports are pin-shared with other alternative functions (AFs) to obtain maximum flexibility on the package pins. Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are

shared with digital or analog alternate functions. All GPIOs are high-current capable except for analog inputs.

Timers and PWM generation

Two 16-bit advanced timer (TIMER0 & TIMER7), ten 16-bit general timers (TIMER1 ~ TIMER4, TIMER8 ~ TIMER13), and two 16-bit basic timer (TIMER5 & TIMER6)
Up to 4 independent channels of PWM, output compare or input capture for each general timer and external trigger input
16-bit, motor control PWM advanced timer with programmable dead-time generation for output match
Encoder interface controller with two inputs using quadrature decoder
24-bit SysTick timer down counter
2 watchdog timers (free watchdog timer and window watchdog timer)

The advanced timer (TIMER0 & TIMER7) can be used as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable dead-time generation. It can also be used as a complete general timer. The 4 independent channels can be used for input capture, output compare, PWM generation (edge- or center-aligned counting modes) and single pulse mode output. If configured as a 16-bit general timer, it has the same functions as the TIMERx timer. It can be synchronized with external signals or to interconnect with other general timers together which have the same architecture and features.
The general timer, known as TIMER1 ~ TIMER4, TIMER8 ~ TIMER13 can be used for a variety of purposes including general time, input signal pulse width measurement or output waveform generation such as a single pulse generation or PWM output, up to 4 independent channels for input capture/output compare. The general timer is based on a 16-bit auto-reload up/down counter and a 16-bit prescaler. TIMER1 ~ TIMER4 and TIMER8/TIMER11 also supports an encoder interface with two inputs using quadrature decoder.
The basic timer, known as TIMER5 & TIMER6, are mainly used for DAC trigger generation. They can also be used as a simple 16-bit time base.
The GD32F207xx have two watchdog peripherals, free watchdog timer and window watchdog timer. They offer a combination of high safety level, flexibility of use and timing accuracy.
The free watchdog timer includes a 12-bit down-counting counter and an 8-bit prescaler, it is clocked from an independent 40 KHz internal RC and as it operates independently of the main clock, it can operate in deep-sleep and standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management.
The window watchdog timer is based on a 7-bit down counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early wakeup interrupt capability and the counter can be frozen in debug mode.

The SysTick timer is dedicated for OS, but could also be used as a standard down counter.

The features are shown below:
A 24-bit down counter
Auto reload capability
Maskable system interrupt generation when the counter reaches 0
Programmable clock source


Real time clock (RTC) and backup registers

32-bit up-counter with a programmable 20-bit prescaler
Alarm function
Interrupt and wake-up event
84 bytes backup registers for data protection

The real time clock is an independent timer which provides a set of continuously running counters in backup registers to provide a real calendar function, and provides an alarm interrupt or an expected interrupt. It is not reset by a system or power reset, or when the device wakes up from standby mode. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 KHz from external crystal oscillator.
The backup registers are located in the backup domain that remains powered-on by VBAT even if VDD power is shut down, they are forty two 16-bit (84 bytes) registers for data protection of user application data, and the wake-up action from standby mode or system reset do not affect these registers.
In addition, the backup registers can be used to implement the tamper detection, RTC calibration function and waveform detection.

Inter-integrated circuit (I2C)

Up to three I2C bus interfaces can support both master and slave mode with a frequency up to 400 KHz
Provide arbitration function, optional PEC (packet error checking) generation and checking
Supports 7-bit and 10-bit addressing mode and general call addressing mode

The I2C interface is an internal circuit allowing communication with an external I2C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line (SDA) and a serial clock line (SCL). The I2C module provides transfer rate of up to 100 KHz in standard mode and up to 400 KHz in fast mode. The I2C module also has an arbitration detect function to prevent the situation where more than one master attempts to transmit data to the I2C bus at the same time. A CRC-8 calculator is also provided in I2C interface to perform packet error checking

for I2C data.


Serial peripheral interface (SPI)

Up to three SPI interfaces with a frequency of up to 30 MHz
Support both master and slave mode
Hardware CRC calculation and transmit automatic CRC error checking
Quad wire configuration available in master mode (only in SPI0)

The SPI interface uses 4 pins, among which are the serial data input and output lines (MISO & MOSI), the clock line (SCK) and the slave select line (NSS). Both SPIs can be served by the DMA controller. The SPI interface may be used for a variety of purposes, including simplex synchronous transfers on two lines with a possible bidirectional data line or reliable communication using CRC checking. Quad-SPI master mode is also supported in SPI0.

Universal    synchronous/asynchronous    receiver    transmitter (USART/UART)
Up to four USARTs and four UARTs with operating frequency up to 7.5 MHz
Supports both asynchronous and clocked synchronous serial communication modes
IrDA SIR encoder and decoder support
LIN break generation and detection
ISO 7816-3 compliant smart card interface

The USART (USART0, USART1, USART2, USART5) and UART (UART3, UART4, UART6,
UART7) are used to transmit data between parallel and serial interfaces, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. It is also commonly used for RS-232 standard communication. The USART/UART includes a programmable baud rate generator which is capable of dividing the system clock to produce a dedicated clock for the USART/UART transmitter and receiver. The USART/UART also supports DMA function for high speed data communication.
Inter-IC sound (I2S)

Two I2S bus Interfaces with sampling frequency from 8 KHz to 192 KHz, multiplexed with SPI1 and SPI2
Support either master or slave mode audio
Sampling frequencies from 8 KHz up to 192 KHz are supported.

The Inter-IC sound (I2S) bus provides a standard communication interface for digital audio applications by 3-wire serial lines. GD32F207xx contain an I2S-bus interface that can be operated with 16/32-bit resolution in master or slave mode, pin multiplexed with SPI1 and

SPI2. The audio sampling frequencies from 8 KHz to 192 KHz is supported with less than 0.5% accuracy error.

Universal serial bus full-speed interface (USBFS)

One USB device/host full-speed Interface with frequency up to 12 Mbit/s
Internal main PLL for USB CLK compliantly

The Universal Serial Bus (USB) is a 4-wire bus with 4 bidirectional endpoints. The device controller enables 12 Mbit/s data exchange with integrated transceivers in device/host mode. Full-speed peripheral is compliant with the USB 2.0 specification. Transaction formatting is performed by the hardware, including CRC generation and checking. The status of a completed USB transfer or error condition is indicated by status registers. An interrupt is also generated if enabled. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HXTAL crystal oscillator) and the operating frequency divided from APB1 should be 12 MHz above.

Controller area network (CAN)

Two CAN2.0B interface with communication frequency up to 1 Mbit/s
Internal main PLL for CAN CLK compliantly

Controller area network (CAN) is a method for enabling serial communication in field bus. The CAN protocol has been used extensively in industrial automation and automotive applications. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three mailboxes for transmission and two FIFOs of three message deep for reception. It also provides 28 scalable/configurable identifier filter banks for selecting the incoming messages needed and discarding the others.

Ethernet (ENET)

IEEE 802.3 compliant media access controller (MAC) for Ethernet LAN
10/100 Mbit/s rates with dedicated DMA controller and SRAM
Support hardware precision time protocol (PTP) with conformity to IEEE 1588

The Ethernet media access controller (MAC) conforms to IEEE 802.3 specifications and fully supports IEEE 1588 standards. The embedded MAC provides the interface to the required external network physical interface (PHY) for LAN bus connection via an internal media independent interface (MII) or a reduced media independent interface (RMII). The number of MII signals provided up to 16 with 25 MHz output and RMII up to 7 with 50 MHz output. The function of 32-bit CRC checking is also available.

External memory controller (EXMC)

Supported external memory: SRAM, PSRAM, ROM and NOR-Flash, NAND Flash and PC card, SDRAM with up to 32-bit data bus
Provide ECC calculating hardware module for NAND Flash memory block
Two SDRAM banks with independent configuration, up to 13-bits Row Address, 11-bits Column Address, 2-bits internal banks address
SDRAM Memory size: 4x16Mx32bit(256 MB), 4x16Mx16bit (128 MB), 4x16Mx8bit (64 MB)
External memory controller (EXMC) is an abbreviation of external memory controller. It is divided into several sub-banks for external device support, each sub-bank has its own chip selection signal but at one time, only one bank can be accessed. The EXMC support code execution from external memory except NAND Flash and PC card. The EXMC also can be configured to interface with the most common LCD module of Motorola 6800 and Intel 8080 series and reduce the system cost and complexity.
The EXMC of GD32F207xx in LQFP144 package above also supports synchronous dynamic random access memory (SDRAM). It translates AHB transactions into the appropriate SDRAM protocol, and meanwhile, makes sure the access time requirements of the external SDRAM devices are satisfied.

Secure digital input and output card interface (SDIO)

Support SD2.0/SDIO2.0/MMC4.2 host interface

The Secure Digital Input and Output Card Interface (SDIO) provides access to external SD memory cards specifications version 2.0, SDIO card specification version 2.0 and multi-media card system specification version 4.2 with DMA supported. In addition, this interface is also compliant with CE-ATA digital protocol rev1.1.

TFT LCD interface (TLI)

24-bit RGB Parallel Pixel Output; 8 bits-per-pixel (RGB888)
Supports up to SVGA (800x600) resolution

The TFT LCD interface provides a parallel digital RGB (Red, Green, Blue) and signals for horizontal, vertical synchronization, pixel clock and data enable as output to interface directly to a variety of LCD (Liquid Crystal Display) and TFT (Thin Film Transistor) panels. A built-in DMA engine continuously move data from system memory to TLI and then, output to an external LCD display. Two separate layers are supported in TLI, as well as layer window and blending function.

Digital camera interface (DCI)

Digital video/picture capture
8/10/12/14 data width supported
High transfer efficiency with DMA interface
Video/picture crop supported
Various pixel formats supported including JPEG/YCrCb/RGB
Hard/embedded synchronous signals supported

DCI is an 8-bit to 14-bit parallel interface that able to capture video or picture from a camera via Digital Camera Interface. It supports 8/10/12/14 bits data width through DMA operation.

Cryptographic acceleration Unit (CAU)

Supports DES, 3DES or AES algorithm
DES/3DES supports Electronic codebook (ECB) or Cipher block chaining (CBC) mode
3DES supports 64bits-key, 128bits-key or 192bits-key
AES supports 128bits-key, 192bits-key or 256 bits-key
AES supports Electronic codebook (ECB), Cipher block chaining (CBC) mode or Counter mode (CTR) mode
Support DMA mode for input data flow

The Cryptographic Acceleration Unit supports acceleration of DES, 3DES or AES (128, 192, or 256) algorithms. The DES/3DES supports Electronic codebook (ECB) or Cipher block chaining (CBC) mode. The AES supports Electronic codebook (ECB), Cipher block chaining (CBC) mode or Counter mode (CTR) mode.

Hash acceleration unit (HAU)

Supports SHA-1, SHA-224 and SHA-256 algorithms, compliant with FIPS PUB 180-2 (Federal Information Processing Standards Publication 180-2)
Supports MD5 compliant with IETF RFC 1321 (Internet Engineering Task Force Request For Comments number 1321)
Supports HMAC (keyed-hash message authentication code) algorithm
Automatic swapping to comply with the big-endian or little-endian for MD5, SHA-1, SHA- 224 and SHA-256 algorithms
Automatic padding to fit module 512
Support DMA mode for input data flow

The HAU supports acceleration of SHA-1, SHA-224, SHA-256, MD5 algorithm and the HMAC (keyed-hash message authentication code) algorithm, which calling the SHA-1, SHA-224, SHA-256 or MD5 hash function to calculate key, message, digest three times.

True Random number generator (TRNG)

About 40 period PLL clock consumed between two consecutive random numbers
Disable TRNG module will reduce the chip power consumption
32-bit random value seed is generated from analog noise

The true random number generator (TRNG) module can generate a 32-bit value using continuous analog noise.

Debug mode

Serial wire JTAG debug port (SWJ-DP)

The ARM® SWJ-DP Interface is embedded and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

Package and operation temperature

LQFP176 (GD32F207Ix), LQFP144 (GD32F207Zx), LQFP100 (GD32F207Vx), LQFP64 (GD32F207Rx)
Operation temperature range: -40°C to +85°C (industrial level)

扫二维码用手机看

飞睿无线定位测距uwb标签UWB芯片厂商UWB定位公司实现无缝定位的领跑者

在当今数字化世界中,定位技术的重要性越来越被广泛认知和应用。从室内导航到物流跟踪,无线测距UWB芯片的出现为各行各业带来了新的可能性。而在这个充满竞争的领域中,一家名为飞睿UWB定位公司的无线定位测距uwb标签UWB芯片厂商,凭借其先进的技术和创新能力,成功成为实现无缝定位的先进者。 UWB(Ultra-Wideband)是一种广泛应用于室内定位和跟踪的无线通信技术。相比传统的定位技术,如GPS或Wi-Fi,UWB具有更高的精度和定位准确性。这一技术利用短脉冲信号的传播时间来计算物体与基站之间的距离,从而实现高精度的定位。 飞睿UWB定位公司作为一家专注于UWB技术研发和应用的企业,不仅在无线定位测距uwb标签UWB芯片领域拥有深厚的技术实力,而且在产品研发和市场推广方面也积累了丰富的经验。该公司的核心业务包括UWB芯片的设计、制造、销售和技术支持,并提供完整的解决方案来满足不同行业的需求。 一、UWB芯片的优势和应用 UWB芯片作为实现准确定位和跟踪的关键技术,具有许多优势和广泛应用的潜力。首先,UWB芯片具有高精度的定位能力,可以达到亚厘米级的精度,尤其适用于对位置精度要求高的应用场景。其次,UWB技术在室内环境中的表现出色,能够克服传统技术在室内多路径干扰和信号衰减方面的限制。此外,UWB芯片还能够实现低功耗和高数据传输速率,适用于物流追踪、室内导航、智能家居等领域。 二、飞睿UWB定位公司的研发实力和技术创新 飞睿UWB定位公司以其突出的研发实力和技术创新能力在行业内独树一帜。该公司拥有一支由工程师和科研人员组成的专业团队,致力于UWB芯片的研发和创新应用。不仅在硬件设计方面有着丰富的经验,还在信号处理算法和定位算法等核心技术上有着深入研究。通过持续的技术创新和研发投入,UWB定位公司不断地提升产品性能,满足市场需求。 三、UWB定位公司的产品与解决方案 飞睿作为一家专业的无线定位测距uwb标签UWB芯片厂商,UWB定位公司提供了多款优秀的产品与解决方案。首先,飞睿的UWB芯片具有高性能和可靠性,能够满足各行业对定位精度和稳定性的要求。其次,UWB定位公司还提供完善的软件开发工具和技术支持,帮助客户快速集成和开发应用。此外,UWB定位公司还定制化的解决方案,根据客户的具体需求提供全面的技术支持和服务,确保系统的稳定运行和良好的用户体验。 四、UWB定位公司的应用案例 UWB定位公司的产品和解决方案已经成功应用于多个行业,并取得了显著的成果。以下是一些应用案例的介绍: 1. 物流和仓储管理:UWB定位技术可以实时追踪货物的位置和运动轨迹,提高物流效率和准确性。通过在仓库内部安装UWB基站,可以实现对货物的高精度定位,减少货物丢失和误配的情况,提升仓储管理的效率。 2. 室内导航和定位服务:UWB芯片可以用于室内导航和定位服务,帮助人们快速找到目的地并提供导航指引。在商场、机场、医院等场所安装UWB基站,可以提供准确的导航服务,为用户提供更好的体验。 3. 车联网和自动驾驶:UWB技术在车联网和自动驾驶领域也有广泛应用。通过在车辆中安装UWB传感器和芯片,可以实现车辆之间的精准通信和定位,提升驾驶安全性和车辆自主性。 4. 工业制造和机器人:在工业制造和机器人领域,UWB技术可以用于定位和跟踪移动设备和机器人的位置,提高生产效率和自动化水平。通过与其他传感器和系统的结合,可以实现更智能化的制造和操作。 五、未来发展和挑战 飞睿作为无线定位测距uwb标签UWB芯片厂商和定位技术提供商,UWB定位公司面临着许多机遇和挑战。随着物联网和人工智能的快速发展,对于精准定位和跟踪的需求将越来越大。UWB技术在室内定位、智能交通、工业制造等领域有着广阔的应用前景。然而,市场竞争激烈,技术要求不断提高,对于UWB定位公司来说,需要不断加强技术研发和创新能力,提供更优秀的产品和解决方案,赢得客户的信任和市场份额。 六、技术合作与生态建设 飞睿UWB定位公司在推动技术合作与生态建设方面也取得了显著成绩。他们积极与其他行业的厂商和合作伙伴进行技术交流和合作,共同推动UWB技术的发展和应用。通过与硬件设备生产商、软件开发公司以及系统集成商等的合作,UWB定位公司不仅拓展了产品的应用领域,还实现了技术的互补和资源的共享,加快了技术创新的速度和效果。 七、用户体验与满意度 作为先进的UWB芯片厂商和定位技术提供商,飞睿UWB定位公司一直将用户体验和满意度放在优先位置。他们注重产品的易用性和稳定性,在产品设计和功能开发上持续优化,以提供更好的用户体验。同时,UWB定位公司还建立了完善的售后服务体系,及时响应客户的需求和问题,并提供技术支持和解决方案,确保用户能够充分发挥UWB技术的价值和效果,获得满意的使用体验。 八、安全与隐私保护 在定位技术应用的同时,飞睿UWB定位公司也重视用户的安全和隐私保护。他们在产品设计和开发中注入了安全机制,采用加密和身份验证等技术手段,确保用户的数据和隐私得到有效保护。同时,UWB定位公司严格遵守相关法规和行业标准,保证数据的合法和合规使用,为用户提供可信赖的定位解决方案。 九、社会责任与可持续发展 作为一家具有社会责任感的企业,飞睿uwb标签UWB定位公司积极关注可持续发展和环境保护。他们在生产过程中注重资源的合理利用和能源的节约,致力于减少对环境的影响。同时,UWB定位公司也积极参与社会公益活动,回馈社会,为推动可持续发展和社会进步做出贡献。 总结: 飞睿UWB定位公司作为一家先进的无线定位测距uwb标签UWB芯片厂商和解决方案提供商,通过先进的技术研发和创新能力,成功实现了无缝定位的先进地位。他们的产品和解决方案在物流管理、室内导航、车联网、工业制造等领域展现出了巨大的应用潜力和市场前景。同时,UWB定位公司注重用户体验和满意度,积极推动技术合作与生态建设,关注安全与隐私保护,承担社会责任,致力于可持续发展。相信在不久的将来,UWB定位公司将以其先进的技术和卓越的服务,继续引领无线测距UWB芯片领域的发展,为行业和用户带来更多的创新和价值。
点击查看更多
18
2022-02

uA级别智能门锁低功耗雷达模块让门锁更加智能省电节约功耗

发布时间: : 2022-02--18
uA级别智能门锁低功耗雷达模块让门锁更加智能省电节约功耗,指纹门锁并不是什么新鲜事,我相信每个人都很熟悉。随着近年来智能家居的逐步普及,指纹门锁也进入了成千上万的家庭。今天的功耗雷达模块指纹门锁不仅消除了繁琐的钥匙,而且还提供了各种智能功能,uA级别智能门锁低功耗雷达模块用在智能门锁上,可以实现门锁的智能感应屏幕,使电池寿命延长3-5倍,如与其他智能家居连接,成为智能场景的开关。所以今天的指纹门锁更被称为智能门锁。 今天,让我们来谈谈功耗雷达模块智能门锁的安全性。希望能让更多想知道智能门锁的朋友认识下。 指纹识别是智能门锁的核心 指纹识别技术在我们的智能手机上随处可见。从以前的实体指纹识别到屏幕下的指纹识别,可以说指纹识别技术已经相当成熟。指纹识别可以说是整个uA级低功耗雷达模块智能门锁的核心。 目前主要有三种常见的指纹识别方法,即光学指纹识别、半导体指纹识别和超声指纹识别。 光学指纹识别 让我们先谈谈光学指纹识别的原理实际上是光的反射。我们都知道指纹本身是不均匀的。当光照射到我们的指纹上时,它会反射,光接收器可以通过接收反射的光来绘制我们的指纹。就像激光雷达测绘一样。 光学指纹识别通常出现在打卡机上,手机上的屏幕指纹识别技术也使用光学指纹识别。今天的光学指纹识别已经达到了非常快的识别速度。 然而,光学指纹识别有一个缺点,即硬件上的活体识别无法实现,容易被指模破解。通常,活体识别是通过软件算法进行的。如果算法处理不当,很容易翻车。 此外,光学指纹识别也容易受到液体的影响,湿手解锁的成功率也会下降。 超声指纹识别 超声指纹识别也被称为射频指纹识别,其原理与光学类型相似,但超声波使用声波反射,实际上是声纳的缩小版本。因为使用声波,不要担心水折射会降低识别率,所以超声指纹识别可以湿手解锁。然而,超声指纹识别在防破解方面与光学类型一样,不能实现硬件,可以被指模破解,活体识别仍然依赖于算法。 半导体指纹识别 半导体指纹识别主要采用电容、电场(即我们所说的电感)、温度和压力原理来实现指纹图像的收集。当用户将手指放在前面时,皮肤形成电容阵列的极板,电容阵列的背面是绝缘极板。由于不同区域指纹的脊柱与谷物之间的距离也不同,因此每个单元的电容量随之变化,从而获得指纹图像。半导体指纹识别具有价格低、体积小、识别率高的优点,因此大多数uA级低功耗雷达模块智能门锁都采用了这种方案。半导体指纹识别的另一个功能是活体识别。传统的硅胶指模无法破解。 当然,这并不意味着半导体可以百分识别活体。所谓的半导体指纹识别活体检测不使用指纹活体体征。本质上,它取决于皮肤的材料特性,这意味着虽然传统的硅胶指模无法破解。 一般来说,无论哪种指纹识别,都有可能被破解,只是说破解的水平。然而,今天的指纹识别,无论是硬件生活识别还是算法生活识别,都相对成熟,很难破解。毕竟,都可以通过支付级别的认证,大大保证安全。 目前,市场上大多数智能门锁仍将保留钥匙孔。除了指纹解锁外,用户还可以用传统钥匙开门。留下钥匙孔的主要目的是在指纹识别故障或智能门锁耗尽时仍有开门的方法。但由于有钥匙孔,它表明它可以通过技术手段解锁。 目前市场上的锁等级可分为A、B、C三个等级,这三个等级主要是通过防暴开锁和防技术开锁的程度来区分的。A级锁要求技术解锁时间不少于1分钟,B级锁要求不少于5分钟。即使是高级别的C级锁也只要求技术解锁时间不少于10分钟。 也就是说,现在市场上大多数门锁,无论是什么级别,在专业的解锁大师面前都糊,只不过是时间长短。 安全是重要的,是否安全增加了人们对uA级别低功耗雷达模块智能门锁安全的担忧。事实上,现在到处都是摄像头,强大的人脸识别,以及移动支付的出现,使家庭现金减少,所有这些都使得入室盗窃的成本急剧上升,近年来各省市的入室盗窃几乎呈悬崖状下降。 换句话说,无论锁有多安全,无论锁有多难打开,都可能比在门口安装摄像头更具威慑力。 因此,担心uA级别低功耗雷达模块智能门锁是否不安全可能意义不大。毕竟,家里的防盗锁可能不安全。我们应该更加关注门锁能给我们带来多少便利。 我们要考虑的是智能门锁的兼容性和通用性。毕竟,智能门锁近年来才流行起来。大多数人在后期将普通机械门锁升级为智能门锁。因此,智能门锁能否与原门兼容是非常重要的。如果不兼容,发现无法安装是一件非常麻烦的事情。 uA级别低功耗雷达模块智能门锁主要是为了避免带钥匙的麻烦。因此,智能门锁的便利性尤为重要。便利性主要体现在指纹的识别率上。手指受伤导致指纹磨损或老年人指纹较浅。智能门锁能否识别是非常重要的。 当然,如果指纹真的失效,是否有其他解锁方案,如密码解锁或NFC解锁。还需要注意密码解锁是否有虚假密码等防窥镜措施。 当然,智能门锁的耐久性也是一个需要特别注意的地方。uA级别低功耗雷达模块智能门锁主要依靠内部电池供电,这就要求智能门锁的耐久性尽可能好,否则经常充电或更换电池会非常麻烦。 智能门锁低功耗雷达模块:让门锁更加智能省电节约功耗 在当今信息化时代,智能门锁已经成为人们生活中不可或缺的一部分。对于门锁制造商来说,如何提高门锁的安全性、实用性和便利性,成为他们面对的重要课题。随着人们对门锁智能化的需求越来越高,门锁的能耗问题也成为了门锁制造商需要重视的问题。为此,越来越多的门锁制造商开始推出以低功耗为主题的系列产品。在这样的背景下,智能门锁低功耗雷达模块应运而生。 智能门锁低功耗雷达模块是一种新型技术,其采取雷达技术对门锁周围的物体进行探测,一旦发现门锁附近有人靠近,便会将门锁自动解锁,无需使用钥匙。同时,在保持智能控制的前提下,实现了门锁省电、节约功耗,延长门锁使用寿命。 在使用智能门锁低功耗雷达模块的门锁中,控制电路和自动解锁机制是关键的部件。控制电路采用先进的芯片技术,通过优秀的功耗控制以实现模块化管理。而自动解锁机制不仅可以通过微波信号控制实现门锁的无钥匙解锁,还能够在门锁未处理的情况下自动锁定,保障门锁的安全。 智能门锁低功耗雷达模块的主要特点是:低功耗、高灵敏度和高可靠性。该模块在进行人体检测时,可以远距离探测到距离为5-7米远处的人体信号,目标检测速度极快,而且对门锁周围的环境要求不高。同时,该模块采用了自适应自动补偿技术,能够根据不同环境的变化自动调整信号发射和接收参数,减小误检率。 在使用智能门锁低功耗雷达模块的门锁中,其功耗可以做到非常低,一组电池能够支持门锁持续使用几年左右。而且这样的智能门锁除了具有自动解锁的功能,还可与APP相互匹配,实现了远程操作的便捷性。 总的来说,智能门锁低功耗雷达模块的问世,解决了门锁安全性和省电节省方面的问题,是智能门锁材料不可或缺的一部分。作为门锁制造商,只有不断创新,利用这种新型技术,将会在行业中占据重要的地位。 除了上文所述的主要特点和优势,智能门锁低功耗雷达模块还具有以下几点: 1. 实时监测门锁周围环境变化,通过物体的距离体积和运动来确定是否有人靠近门锁,并控制门锁的开启或关闭,使得门锁更加智能化。 2. 可对门锁附件进行检测,如门挂、门应急照明灯以及紧急呼叫按钮等,并及时给出响应,确保门锁能够正常运作。这样,门锁在不受干扰的情况下,能够 保持安全通道。 3. 通过智能学习技术,能够自适应网站多种环境的变化,让智能门锁低功耗雷达模块更加准确和精细的控制门锁的开关,节约能耗并延长使用寿命。 4. 能够与其他智能电器相连,如智能家居系统、电视等,形成智能家居生态圈,更好地控制家庭访客进出,让生活更加方便。 综上所述,智能门锁低功耗雷达模块的出现,对提升门锁能耗管理和智能化有着重要作用。门锁制造商只有将这些新型技术运用到门锁产品中,才能更加贴合用户需求,满足消费市场的日益增长的智能化需求。
查看详情 查看详情
14
2022-01

微波雷达传感器雷达感应浴室镜上的应用

发布时间: : 2022-01--14
微波雷达传感器雷达感应浴室镜上的应用,如今,家用电器的智能化已成为一种常态,越来越多的人开始在自己的浴室里安装智能浴室镜。但是还有很多人对智能浴镜的理解还不够深入,今天就来说说这个话题。 什么是智能浴室镜?智慧型浴室镜,顾名思义,就是卫浴镜子智能化升级,入门级产品基本具备了彩灯和镜面触摸功能,更高档次的产品安装有微波雷达传感器智能感应,当感应到有人接近到一定距离即可开启亮灯或者亮屏操作,也可三色无极调,智能除雾,语音交互,日程安排备忘,甚至在镜子上看电视,听音乐,气象预报,问题查询,智能控制,健康管理等。 智能化雷达感应浴室镜与普通镜的区别,为什么要选TA?,就功能而言,普通浴镜价格用它没有什么压力!而且雷达感应智能浴镜会让人犹豫不决是否“值得一看”。就功能和应用而言,普通浴镜功能单一,而微波雷达传感器智能浴室镜功能创新:镜子灯光色温和亮度可以自由调节,镜面还可以湿手触控,智能除雾,既环保又健康! 尽管智能浴镜比较新颖,但功能丰富,体验感更好,特别是入门级的智能浴镜,具有基础智能化功能,真的适合想体验下智能化的小伙伴们。 给卫生间安装微波雷达传感器浴室镜安装注意什么? ①确定智能浴室镜的安装位置,因为是安装时在墙壁上打孔,一旦安装后一般无法移动位置。 ②在选购雷达感应智能浴室镜时,根据安装位置确定镜子的形状和尺寸。 ③确定智能浴镜的安装位置后,在布线时为镜子预留好电源线。 ④确定微波雷达传感器智能浴镜的安装高度,一般智能浴镜的标准安装高度约85cm(从地砖到镜子底),具体安装高度要根据家庭成员的身高及使用习惯来决定。 ⑤镜面遇到污渍,可用酒精或30%清洁稀释液擦洗,平时可用干毛巾养护,注意多通风。
查看详情 查看详情
08
2024-11

酒店WiFi雷达人体传感器:提升宾客体验与能源效率的科技新宠

发布时间: : 2024-11--08
在当今的数字化时代,科技创新不断改变着我们的生活。特别是在酒店行业中,技术的运用已经成为提升宾客满意度和运营效率的关键。近年来,酒店WiFi雷达人体传感器作为一种新兴技术,逐渐受到业界的广泛关注。本文将深入探讨酒店WiFi雷达人体传感器的原理、功能、应用及其对酒店行业带来的深远影响。 一、酒店WiFi雷达人体传感器的工作原理 酒店WiFi雷达人体传感器是一种基于无线信号传输和雷达探测技术的智能设备。它利用WiFi信号在空气中传播时遇到障碍物(如人体)会产生反射的原理,通过接收和分析这些反射信号,实现对人体活动的精准探测。与传统的红外、超声波等传感器相比,WiFi雷达人体传感器具有更高的穿透性和抗干扰能力,能够在复杂的环境中稳定运行。 二、酒店WiFi雷达人体传感器的核心功能 人体活动检测:酒店WiFi雷达人体传感器能够实时监测到指定区域内的人体活动,包括人员的进出、移动和停留等。这一功能为酒店提供了丰富的数据支持,有助于优化服务流程和提高宾客满意度。 数据统计分析:传感器收集到的人体活动数据可以通过专门的软件进行分析和处理,生成各种统计报表和图表。酒店管理者可以根据这些数据了解宾客的行为习惯、喜好和需求,从而制定更加精准的市场营销策略。 智能化控制:结合智能控制系统,酒店WiFi雷达人体传感器可以实现灯光、空调、窗帘等设备的智能化控制。例如,当传感器检测到宾客离开房间后,自动关闭房间内的灯光和空调等设备,从而节约能源并降低运营成本。 三、酒店WiFi雷达人体传感器的应用场景 客房服务:在客房内安装酒店WiFi雷达人体传感器,可以实时监测宾客的活动状态。当宾客离开房间时,系统自动发送消息给客房服务中心,通知工作人员及时清理房间;当宾客返回房间时,系统自动调整房间内的温度和湿度,确保宾客的舒适度。 公共区域:在酒店大堂、会议室、健身房等公共区域安装酒店WiFi雷达人体传感器,可以实时监测人员流动情况。根据人员密度和分布情况,系统可以自动调整灯光、音响等设备的运行状态,营造更加舒适的环境氛围。 能源管理:通过酒店WiFi雷达人体传感器收集到的数据,酒店管理者可以分析各个区域的能源消耗情况,找出能源浪费的根源。结合智能控制系统,实现对能源使用的精细化管理,降低酒店的运营成本。 四、酒店WiFi雷达人体传感器带来的行业变革 提升宾客满意度:通过酒店WiFi雷达人体传感器的应用,酒店能够实现对宾客需求的精准把握和快速响应。宾客在享受高品质服务的同时,也能感受到酒店对他们的尊重和关心,从而提升宾客满意度和忠诚度。 提高运营效率:酒店WiFi雷达人体传感器能够实时收集和分析宾客的行为数据,为酒店管理者提供决策支持。通过优化服务流程、提高员工工作效率等方式,降低酒店的运营成本并提高盈利能力。 推动智能化发展:酒店WiFi雷达人体传感器作为智能化酒店建设的重要组成部分,将推动酒店行业向更加智能化、个性化的方向发展。未来,随着技术的不断进步和应用场景的不断拓展,酒店WiFi雷达人体传感器将在酒店行业中发挥更加重要的作用。 五、酒店WiFi雷达人体传感器的未来发 随着物联网、大数据、人工智能等技术的不断发展,酒店WiFi雷达人体传感器将拥有更加广阔的应用前景。未来,我们可以期待酒店WiFi雷达人体传感器在以下几个方面实现突破: 精准度提升:通过优化算法和硬件设计,提高酒店WiFi雷达人体传感器的探测精度和稳定性。同时,结合其他传感器技术(如红外、超声波等),实现多模态融合探测,进一步提高探测效果。 功能拓展:除了基本的人体活动检测和数据分析功能外,酒店WiFi雷达人体传感器还可以拓展出更多的应用场景和功能。例如,结合虚拟现实技术,为宾客提供更加沉浸式的体验;结合智能机器人技术,实现自动化服务和互动等。 标准化与普及化:随着技术的成熟和应用场景的不断拓展,酒店WiFi雷达人体传感器的标准化和普及化将成为必然趋势。未来,酒店WiFi雷达人体传感器将成为酒店行业的标配之一,为整个行业的智能化发展注入新的动力。 总之,酒店WiFi雷达人体传感器作为一种新兴技术,在酒店行业中具有广阔的应用前景和深远的影响。通过深入了解其工作原理、核心功能和应用场景等方面的内容,我们可以更好地把握其发展趋势和应用前景,为酒店的智能化建设提供有力支持。
查看详情 查看详情
07
2024-11

酒店雷达人体感应器:打造智能化住宿新体验

发布时间: : 2024-11--07
一、引言 在科技日新月异的今天,智能化已经渗透到我们生活的方方面面。酒店业作为服务业的重要组成部分,也在不断地寻求创新和突破。酒店雷达人体感应器作为智能化酒店的一大亮点,以其独特的功能和优势,为宾客带来了未有的住宿体验。本文将对酒店雷达人体感应器进行详细介绍,分析其原理、功能、应用场景及未来发展趋势。 二、酒店雷达人体感应器概述 酒店雷达人体感应器是一种基于雷达技术的智能感知设备,能够实时监测酒店房间内的人体活动情况。它采用非接触式探测方式,通过发射和接收电磁波信号,感知人体移动和静止状态,从而实现智能化控制和管理。 三、酒店雷达人体感应器的工作原理 酒店雷达人体感应器的工作原理主要基于多普勒效应和微波探测技术。当设备发射微波信号时,遇到移动的人体目标会产生反射波,这些反射波会携带有人体目标的速度、距离等信息。感应器通过接收并分析这些反射波,可以准确判断房间内是否有人体活动,进而实现智能化控制。 四、酒店雷达人体感应器的功能特点 实时监测:酒店雷达人体感应器能够24小时不间断地监测房间内的人体活动情况,确保宾客的安全和舒适。 智能控制:根据感应到的人体活动信息,感应器可以智能控制房间的照明、空调、窗帘等设备,为宾客营造舒适的环境。 节能环保:通过智能控制,感应器可以在宾客离开房间时自动关闭不必要的设备,达到节能环保的目的。 数据统计:感应器可以记录并分析宾客的入住习惯,为酒店提供有价值的数据支持,帮助酒店优化服务和管理。 五、酒店雷达人体感应器的应用场景 客房智能化控制:酒店雷达人体感应器可以安装在客房内,实时监测宾客的活动情况,智能控制照明、空调等设备,提高宾客的住宿体验。 公共区域管理:在酒店的公共区域,如大堂、走廊、电梯等地方,感应器可以实时监测人流情况,为酒店安保提供有力支持。 会议室预约管理:在会议室等场所,感应器可以实时检测房间内是否有人,帮助酒店实现会议室预约管理的智能化。 能源管理:通过感应器收集的数据,酒店可以更加准确地了解设备的使用情况,从而制定合理的能源管理策略,降低能耗成本。 六、酒店雷达人体感应器的优势 提高宾客满意度:智能化控制可以根据宾客的需求和习惯,自动调整房间内的环境,提高宾客的满意度和舒适度。 提升酒店形象:智能化服务是酒店提升品牌形象的重要手段之一。酒店雷达人体感应器的应用,展示了酒店的科技实力和创新精神,有助于提升酒店形象。 节能环保:通过智能控制,感应器可以在宾客离开房间时自动关闭不必要的设备,降低能耗和碳排放,符合环保理念。 提高管理效率:感应器收集的数据可以为酒店提供有价值的信息支持,帮助酒店优化服务和管理,提高管理效率。 七、酒店雷达人体感应器的未来发展趋势 智能化程度不断提高:随着人工智能技术的不断发展,酒店雷达人体感应器的智能化程度将不断提高,实现更加精准、智能的感知和控制。 多功能集成:未来的酒店雷达人体感应器将不仅仅是单一的感知设备,还将集成更多的功能,如语音控制、人脸识别等,为宾客提供更加便捷、丰富的服务。 定制化服务:根据宾客的个性化需求,酒店雷达人体感应器将提供定制化服务,满足不同宾客的差异化需求。 跨领域应用:随着技术的不断进步和应用场景的拓展,酒店雷达人体感应器将逐渐应用于更多领域,如智能家居、智慧医疗等。 八、结语 酒店雷达人体感应器作为智能化酒店的重要组成部分,以其独特的功能和优势,为宾客带来了未有的住宿体验。随着技术的不断发展和应用场景的拓展,酒店雷达人体感应器将在未来发挥更加重要的作用,推动酒店业的智能化进程。同时,我们也期待更多的创新技术和产品涌现,共同推动智能化时代的发展。
查看详情 查看详情
06
2024-11

UWB雷达人体雷达探测器:智能家居的新星

发布时间: : 2024-11--06
随着科技的不断进步,智能家居已经逐渐成为现代家庭的重要组成部分。在众多智能家居设备中,UWB雷达人体雷达探测器以其独特的技术优势和广泛的应用场景,受到了越来越多消费者的青睐。本文将围绕UWB雷达人体雷达探测器在智能家居领域的应用,展开详细的介绍和分析。 一、UWB雷达人体雷达探测器的技术原理 UWB(Ultra-Wideband)雷达人体雷达探测器是一种基于超宽带无线通信技术的人体感知设备。它利用纳秒级或亚纳秒级的脉冲信号,通过发射和接收电磁波来探测人体的存在和运动状态。与传统的红外、微波等探测技术相比,UWB雷达具有更高的探测精度、更强的抗干扰能力和更远的探测距离。 在智能家居中,UWB雷达人体雷达探测器可以安装在房间的各个角落,通过发射电磁波来扫描整个空间,实时感知人体的位置和运动轨迹。当有人进入房间时,探测器会立即捕捉到人体的运动信号,并通过无线方式将数据传输到智能家居控制系统。控制系统根据接收到的数据,可以自动调整家居设备的运行状态,实现智能化的场景控制。 二、UWB雷达人体雷达探测器在智能家居中的应用 室内定位与导航 UWB雷达人体雷达探测器的高精度定位功能,使其在室内定位与导航领域具有广泛的应用前景。通过在家中安装多个探测器,可以构建一个完整的室内定位系统。家庭成员可以通过智能手机等设备,实时获取自己的位置信息,并根据需要进行导航。这不仅方便了家庭成员的日常出行,还提高了家庭的安全性。 智能照明控制 在智能家居中,照明控制是一个重要的应用场景。UWB雷达人体雷达探测器可以与智能照明系统相结合,实现人来灯亮、人走灯灭的智能化控制。当有人进入房间时,探测器会感知到人体的存在,并自动打开房间内的照明设备;当人员离开房间后,探测器会再次感知到人体的离开,并自动关闭照明设备。这种智能化的照明控制方式,不仅提高了居住的舒适度,还节省了能源。 智能安防监控 在智能安防领域,UWB雷达人体雷达探测器同样发挥着重要的作用。通过安装探测器,可以实时监测家庭的安全状况。当有人非法入侵时,探测器会立即感知到人体的存在,并触发警报系统。同时,探测器还可以与智能摄像头等设备相结合,实现视频监控和录像功能。这种全方位的安防监控方式,有效提高了家庭的安全性和防范能力。 智能家电控制 在智能家居中,各种家电设备的智能化控制也是一个重要的应用场景。UWB雷达人体雷达探测器可以与智能家电系统相结合,实现家电设备的自动化控制。例如,当有人进入客厅时,探测器会感知到人体的存在,并自动打开电视、音响等设备;当人员离开客厅后,探测器会再次感知到人体的离开,并自动关闭这些设备。这种智能化的家电控制方式,不仅提高了生活的便捷性,还节省了能源。 三、UWB雷达人体雷达探测器的优势 高精度定位:UWB雷达人体雷达探测器采用超宽带无线通信技术,具有厘米级的高精度定位能力,能够准确感知人体的位置和运动轨迹。 强抗干扰能力:UWB雷达采用纳秒级或亚纳秒级的脉冲信号进行通信,具有较强的抗干扰能力,能够在复杂环境下稳定工作。 穿透力强:UWB雷达的信号能够穿透墙壁、玻璃等障碍物,实现穿墙探测功能,扩大了探测范围。 低功耗设计:UWB雷达人体雷达探测器采用低功耗设计,能够长时间稳定工作,减少了能源浪费。 四、UWB雷达人体雷达探测器的未来发展 随着智能家居市场的不断发展和壮大,UWB雷达人体雷达探测器将会有更广阔的应用前景。未来,随着技术的不断进步和成本的降低,UWB雷达人体雷达探测器将会更加普及和智能化。同时,随着物联网、大数据等技术的不断发展,UWB雷达人体雷达探测器将与更多的智能家居设备相结合,实现更加丰富的智能化应用场景。 总之,UWB雷达人体雷达探测器作为智能家居领域的一颗新星,以其独特的技术优势和广泛的应用场景,正在逐渐改变着我们的生活方式。未来,随着技术的不断进步和市场的不断扩大,UWB雷达人体雷达探测器将会在智能家居领域发挥更加重要的作用。
查看详情 查看详情
上一页
1
2
...
304

地址:深圳市宝安区西乡街道麻布社区宝安互联网产业基地A区6栋7栋7706

邮箱:Sales@ferry-semi.com

版权所有©2020  深圳市飞睿科技有限公司  粤ICP备2020098907号    飞睿科技微波雷达wifi模块网站地图

 

免责声明:本网站部分图片和文字内容可能来源于网络,转载目的在于传递更多信息,并不代表本网站赞同其观点或证实其内容的真实性。如涉及作品内容、版权和其它问题,请在30日内与本网站联系,我们将在第一时间删除内容!本站拥有对此声明的最终解释权。