这是描述信息
兆易创新GD32-GigaDevice-兆易创新代理

兆易创新GD32E230K6U6-GD32 ARM Cortex-M23 Microcontroller

兆易创新GD32E230K6U6-GD32 ARM Cortex-M23 Microcontroller GigaDevice Semiconductor Inc. GD32E230xx ARM® Cortex®-M23 32-bit MCU Datasheet General description The GD32E230xx device belongs to the value line of GD32 MCU family. It is a new 32-bit general-purpose microcontroller based on the ARM® Cortex®-M23 core. The Cortex-M23 processor is an energy-efficient processor with a very low gate count. It is intended to be used for microcontroller and deeply embedded applications that require an area-optimized processor. The processor delivers high energy efficiency through a small but powerful instruction set and extensively optimized design, providing high-end processing hardware including a single-cycle multiplier and a 17-cycle divider. The GD32E230xx device incorporates the ARM® Cortex®-M23 32-bit processor core operating at up to 72 MHz frequency with Flash accesses 0~2 wait states to obtain maximum efficiency. It provides up to 64 KB embedded Flash memory and up to 8 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer one 12-bit ADC and one comparator, up to five general 16-bit timers, a basic timer, a PWM advanced timer, as well as standard and advanced communication interfaces: up to two SPIs, two I2Cs, two USARTs, and an I2S. The device operates from a 1.8 to 3.6 V power supply and available in –40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications. The above features make the GD32E230xx devices suitable for a wide range of applications, especially in areas such as industrial control, motor drives, user interface, power monitor and alarm systems, consumer and handheld equipment, gaming and GPS, E-bike and so on. Device information Table 2-1. GD32E230xx devices features and peripheral list   Part Number GD32E230xx   K4U6 K6U6 K8U6 K4T6 K6T6 K8T6 C4T6 C6T6 C8T6 FLASH (KB) 16 32 64 16 32 64 16 32 64 SRAM (KB) 4 6 8 4 4 8 4 6 8 Timers General timer(16-bit) 4 (2,13,15,16) 4 (2,13,15,16) 5 (2,13-16) 4 (2,13,15,16) 4 (2,13,15,16) 5 (2,13-16) 4 (2,13,15,16) 4 (2,13,15,16) 5 (2,13-16)   Advanced timer(16-bit) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0)   SysTick 1 1 1 1 1 1 1 1 1   Basic timer(16-bit) 1 (5) 1 (5) 1 (5) 1 (5) 1 (5) 1 (5) 1 (5) 1 (5) 1 (5)   Watchdog 2 2 2 2 2 2 2 2 2   RTC 1 1 1 1 1 1 1 1 1 Connectivity   USART 1 (0) 2 (0-1) 2 (0-1) 1 (0) 2 (0-1) 2 (0-1) 1 (0) 2 (0-1) 2 (0-1)     I2C 1 (0) 1 (0) 2 (0-1) 1 (0) 1 (0) 2 (0-1) 1 (0) 1 (0) 2 (0-1)     SPI/I2S 1/1 (0)/(0) 1/1 (0)/(0) 2/1 (0-1)/(0) 1/1 (0)/(0) 1/1 (0)/(0) 2/1 (0-1)/(0) 1/1 (0)/(0) 1/1 (0)/(0) 2/1 (0-1)/(0) GPIO 27 27 27 25 25 25 39 39 39 CMP 1 1 1 1 1 1 1 1 1 EXTI 16 16 16 16 16 16 16 16 16 ADC Units 1
兆易创新GD32-GigaDevice-兆易创新代理
产品描述

兆易创新GD32E230K6U6-GD32 ARM Cortex-M23 Microcontroller

GigaDevice Semiconductor Inc.
GD32E230xx
ARM® Cortex®-M23 32-bit MCU
Datasheet

General description

The GD32E230xx device belongs to the value line of GD32 MCU family. It is a new 32-bit general-purpose microcontroller based on the ARM® Cortex®-M23 core. The Cortex-M23 processor is an energy-efficient processor with a very low gate count. It is intended to be used for microcontroller and deeply embedded applications that require an area-optimized processor. The processor delivers high energy efficiency through a small but powerful instruction set and extensively optimized design, providing high-end processing hardware including a single-cycle multiplier and a 17-cycle divider.
The GD32E230xx device incorporates the ARM® Cortex®-M23 32-bit processor core operating at up to 72 MHz frequency with Flash accesses 0~2 wait states to obtain maximum efficiency. It provides up to 64 KB embedded Flash memory and up to 8 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer one 12-bit ADC and one comparator, up to five general 16-bit timers, a basic timer, a PWM advanced timer, as well as standard and advanced communication interfaces: up to two SPIs, two I2Cs, two USARTs, and an I2S.
The device operates from a 1.8 to 3.6 V power supply and available in –40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications.
The above features make the GD32E230xx devices suitable for a wide range of applications, especially in areas such as industrial control, motor drives, user interface, power monitor and alarm systems, consumer and handheld equipment, gaming and GPS, E-bike and so on.

Device information

Table 2-1. GD32E230xx devices features and peripheral list

 

Part Number

GD32E230xx

 

K4U6

K6U6

K8U6

K4T6

K6T6

K8T6

C4T6

C6T6

C8T6

FLASH (KB)

16

32

64

16

32

64

16

32

64

SRAM (KB)

4

6

8

4

4

8

4

6

8

Timers

General

timer(16-bit)

4

(2,13,15,16)

4

(2,13,15,16)

5

(2,13-16)

4

(2,13,15,16)

4

(2,13,15,16)

5

(2,13-16)

4

(2,13,15,16)

4

(2,13,15,16)

5

(2,13-16)

 

Advanced

timer(16-bit)

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

 

SysTick

1

1

1

1

1

1

1

1

1

 

Basic

timer(16-bit)

1

(5)

1

(5)

1

(5)

1

(5)

1

(5)

1

(5)

1

(5)

1

(5)

1

(5)

 

Watchdog

2

2

2

2

2

2

2

2

2

 

RTC

1

1

1

1

1

1

1

1

1

Connectivity

 

USART

1

(0)

2

(0-1)

2

(0-1)

1

(0)

2

(0-1)

2

(0-1)

1

(0)

2

(0-1)

2

(0-1)

 

 

I2C

1

(0)

1

(0)

2

(0-1)

1

(0)

1

(0)

2

(0-1)

1

(0)

1

(0)

2

(0-1)

 

 

SPI/I2S

1/1

(0)/(0)

1/1

(0)/(0)

2/1

(0-1)/(0)

1/1

(0)/(0)

1/1

(0)/(0)

2/1

(0-1)/(0)

1/1

(0)/(0)

1/1

(0)/(0)

2/1

(0-1)/(0)

GPIO

27

27

27

25

25

25

39

39

39

CMP

1

1

1

1

1

1

1

1

1

EXTI

16

16

16

16

16

16

16

16

16

ADC

Units

1

1

1

1

1

1

1

1

1

 

Channels

(External)

 

10

 

10

 

10

 

10

 

10

 

10

 

10

 

10

 

10

 

Channels

(Internal)

 

2

 

2

 

2

 

2

 

2

 

2

 

2

 

2

 

2

Package

QFN32

LQFP32

LQFP48

 

 

Part Number

GD32E230xx

 

F4V6

F6V6

F8V6

F4P6

F6P6

F8P6

G4U6

G6U6

G8U6

FLASH (KB)

16

32

64

16

32

64

16

32

64

SRAM (KB)

4

6

8

4

6

8

4

6

8

Timers

General

timer(16-bit)

4

(2,13,15,16)

4

(2,13,15,16)

4

(2,13,15,16)

4

(2,13,15,16)

4

(2,13,15,16)

4

(2,13,15,16)

4

(2,13,15,16)

4

(2,13,15,16)

5

(2,13-16)

 

Advanced

timer(16-bit)

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

 

SysTick

1

1

1

1

1

1

1

1

1

 

Basic

timer(16-bit)

1

(5)

1

(5)

1

(5)

1

(5)

1

(5)

1

(5)

1

(5)

1

(5)

1

(5)

 

Watchdog

2

2

2

2

2

2

2

2

2

 

RTC

1

1

1

1

1

1

1

1

1

Connectivity

 

USART

1

(0)

2

(0-1)

2

(0-1)

1

(0)

2

(0-1)

2

(0-1)

1

(0)

2

(0-1)

2

(0-1)

 

 

I2C

1

(0)

1

(0)

2

(0-1)

1

(0)

1

(0)

2

(0-1)

1

(0)

1

(0)

2

(0-1)

 

 

SPI/I2S

1/1

(0)/(0)

1/1

(0)/(0)

2/1

(0-1)/(0)

1/1

(0)/(0)

1/1

(0)/(0)

2/1

(0-1)/(0)

1/1

(0)/(0)

1/1

(0)/(0)

2/1

(0-1)/(0)

GPIO

15

15

15

15

15

15

23

23

23

CMP

1

1

1

1

1

1

1

1

1

EXTI

16

16

16

16

16

16

16

16

16

ADC

Units

1

1

1

1

1

1

1

1

1

 

Channels

(External)

 

9

 

9

 

9

 

9

 

9

 

9

 

10

 

10

 

10

 

Channels

(Internal)

 

2

 

2

 

2

 

2

 

2

 

2

 

2

 

2

 

2

Package

LGA20

TSSOP20

QFN28

 

Memory map

Table 2-3. GD32E230xx memory map

Pre-defined

Regions

 

Bus

 

ADDRESS

 

Peripherals

 

 

0xE000 0000 - 0xE00F FFFF

Cortex M23 internal peripherals

External Device

 

0xA000 0000 - 0xDFFF FFFF

Reserved

External RAM

 

0x60000000 - 0x9FFFFFFF

Reserved

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Peripherals

 

AHB1

0x5004 0000 - 0x5FFF FFFF

Reserved

 

 

0x5000 0000 - 0x5003 FFFF

Reserved

 

 

 

 

 

AHB2

0x4800 1800 - 0x4FFF FFFF

Reserved

 

 

0x4800 1400 - 0x4800 17FF

GPIOF

 

 

0x4800 1000 - 0x4800 13FF

Reserved

 

 

0x4800 0C00 - 0x4800 0FFF

Reserved

 

 

0x4800 0800 - 0x4800 0BFF

GPIOC

 

 

0x4800 0400 - 0x4800 07FF

GPIOB

 

 

0x4800 0000 - 0x4800 03FF

GPIOA

 

 

 

 

 

 

 

AHB1

0x4002 4400 - 0x47FF FFFF

Reserved

 

 

0x4002 4000 - 0x4002 43FF

Reserved

 

 

0x4002 3400 - 0x4002 3FFF

Reserved

 

 

0x4002 3000 - 0x4002 33FF

CRC

 

 

0x4002 2400 - 0x4002 2FFF

Reserved

 

 

0x4002 2000 - 0x4002 23FF

FMC

 

 

0x4002 1400 - 0x4002 1FFF

Reserved

 

 

0x4002 1000 - 0x4002 13FF

RCU

 

 

0x4002 0400 - 0x4002 0FFF

Reserved

 

 

0x4002 0000 - 0x4002 03FF

DMA

 

 

 

 

 

 

 

 

 

 

 

APB2

0x4001 8000 - 0x4001 FFFF

Reserved

 

 

0x4001 5C00 - 0x4001 7FFF

Reserved

 

 

0x4001 5800 - 0x4001 5BFF

DBG

 

 

0x4001 4C00 - 0x4001 57FF

Reserved

 

 

0x4001 4800 - 0x4001 4BFF

TIMER16

 

 

0x4001 4400 - 0x4001 47FF

TIMER15

 

 

0x4001 4000 - 0x4001 43FF

TIMER14

 

 

0x4001 3C00 - 0x4001 3FFF

Reserved

 

 

0x4001 3800 - 0x4001 3BFF

USART0

 

 

0x4001 3400 - 0x4001 37FF

Reserved

 

 

0x4001 3000 - 0x4001 33FF

SPI0/I2S0

 

 

0x4001 2C00 - 0x4001 2FFF

TIMER0

 

 

0x4001 2800 - 0x4001 2BFF

Reserved

 

 

0x4001 2400 - 0x4001 27FF

ADC

 

 

0x4001 0800 - 0x4001 23FF

Reserved

 

Pre-defined

Regions

 

Bus

 

ADDRESS

 

Peripherals

 

 

0x4001 0400 - 0x4001 07FF

EXTI

 

 

0x4001 0000 - 0x4001 03FF

SYSCFG + CMP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APB1

0x4000 CC00 - 0x4000 FFFF

Reserved

 

 

0x4000 C800 - 0x4000 CBFF

Reserved

 

 

0x4000 C400 - 0x4000 C7FF

Reserved

 

 

0x4000 C000 - 0x4000 C3FF

Reserved

 

 

0x4000 8000 - 0x4000 BFFF

Reserved

 

 

0x4000 7C00 - 0x4000 7FFF

Reserved

 

 

0x4000 7800 - 0x4000 7BFF

Reserved

 

 

0x4000 7400 - 0x4000 77FF

Reserved

 

 

0x4000 7000 - 0x4000 73FF

PMU

 

 

0x4000 6400 - 0x4000 6FFF

Reserved

 

 

0x4000 6000 - 0x4000 63FF

Reserved

 

 

0x4000 5C00 - 0x4000 5FFF

Reserved

 

 

0x4000 5800 - 0x4000 5BFF

I2C1

 

 

0x4000 5400 - 0x4000 57FF

I2C0

 

 

0x4000 4800 - 0x4000 53FF

Reserved

 

 

0x4000 4400 - 0x4000 47FF

USART1

 

 

0x4000 4000 - 0x4000 43FF

Reserved

 

 

0x4000 3C00 - 0x4000 3FFF

Reserved

 

 

0x4000 3800 - 0x4000 3BFF

SPI1

 

 

0x4000 3400 - 0x4000 37FF

Reserved

 

 

0x4000 3000 - 0x4000 33FF

FWDGT

 

 

0x4000 2C00 - 0x4000 2FFF

WWDGT

 

 

0x4000 2800 - 0x4000 2BFF

RTC

 

 

0x4000 2400 - 0x4000 27FF

Reserved

 

 

0x4000 2000 - 0x4000 23FF

TIMER13

 

 

0x4000 1400 - 0x4000 1FFF

Reserved

 

 

0x4000 1000 - 0x4000 13FF

TIMER5

 

 

0x4000 0800 - 0x4000 0FFF

Reserved

 

 

0x4000 0400 - 0x4000 07FF

TIMER2

 

 

0x4000 0000 - 0x4000 03FF

Reserved

 

SRAM

 

0x2000 2000 - 0x3FFF FFFF

Reserved

 

 

0x2000 0000 - 0x2000 1FFF

SRAM

 

 

 

Code

 

0x1FFF F810 - 0x1FFF FFFF

Reserved

 

 

0x1FFF F800 - 0x1FFF F80F

Option bytes

 

 

0x1FFF EC00 - 0x1FFF F7FF

System memory

 

 

0x0801 0000 - 0x1FFF EBFF

Reserved

 

 

0x0800 0000 - 0x0800 FFFF

Main Flash memory

 

 

0x0001 0000 - 0x07FF FFFF

Reserved

 

 

Pre-defined

Regions

 

Bus

 

ADDRESS

 

Peripherals

 

 

 

 

0x00000000 - 0x0000FFFF

Aliased to Flash or

system memory

GD32E230Cx LQFP48 pin definitions

Table 2-4. GD32E230Cx LQFP48 pin definitions

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

VDD

1

P

 

Default: VDD

PC13- TAMPER-

RTC

 

2

 

I/O

 

 

Default: PC13

Additional: RTC_TAMP0, RTC_TS, RTC_OUT, WKUP1

PC14-

OSC32IN

 

3

 

I/O

 

Default: PC14 Additional: OSC32IN

PC15-

OSC32OUT

 

4

 

I/O

 

Default: PC15 Additional: OSC32OUT

 

PF0-OSCIN

 

5

 

I/O

 

5VT

Default: PF0 Alternate: I2C0_SDA

Additional: OSCIN

 

PF1- OSCOUT

 

6

 

I/O

 

5VT

Default: PF1

Alternate: I2C0_SCL Additional: OSCOUT

NRST

7

I/O

 

Default: NRST

VSSA

8

P

 

Default: VSSA

VDDA

9

P

 

Default: VDDA

 

 

PA0-WKUP

 

 

10

 

 

I/O

 

Default: PA0

Alternate: USART0_CTS(3), USART1_CTS(4), CMP_OUT, I2C1_SCL(5)

Additional: ADC_IN0, CMP_IM6, RTC_TAMP1, WKUP0

 

 

PA1

 

 

11

 

 

I/O

 

Default: PA1

Alternate: USART0_RTS(3), USART1_RTS(4), I2C1_SDA(5), EVENTOUT, TIMER14_CH0_ON(5)

Additional: ADC_IN1, CMP_IP

 

 

PA2

 

 

12

 

 

I/O

 

Default: PA2

Alternate: USART0_TX(3), USART1_TX(4), TIMER14_CH0(5)

Additional: ADC_IN2, CMP_IM7

 

 

PA3

 

 

13

 

 

I/O

 

Default: PA3

Alternate: USART0_RX(3), USART1_RX(4), TIMER14_CH1(5)

Additional: ADC_IN3

 

 

PA4

 

 

14

 

 

I/O

 

Default: PA4

Alternate: SPI0_NSS, I2S0_WS, USART0_CK(3), USART1_CK(4), TIMER13_CH0, SPI1_NSS(5)

Additional: ADC_IN4, CMP_IM4

 

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

 

 

 

Default: PA5

PA5

15

I/O

 

Alternate: SPI0_SCK, I2S0_CK

 

 

 

 

Additional: ADC_IN5, CMP_IM5

 

 

 

 

Default: PA6

 

 

 

 

Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0,

PA6

16

I/O

 

TIMER0_BRKIN, TIMER15_CH0, EVENTOUT,

 

 

 

 

CMP_OUT

 

 

 

 

Additional: ADC_IN6

 

 

 

 

Default: PA7

 

 

 

 

Alternate: SPI0_MOSI, I2S0_SD, TIMER2_CH1,

PA7

17

I/O

 

TIMER13_CH0, TIMER0_CH0_ON, TIMER16_CH0,

 

 

 

 

EVENTOUT

 

 

 

 

Additional: ADC_IN7

 

 

 

 

Default: PB0

PB0

18

I/O

 

Alternate: TIMER2_CH2, TIMER0_CH1_ON,

USART1_RX(4), EVENTOUT

 

 

 

 

Additional: ADC_IN8

 

 

 

 

Default: PB1

PB1

19

I/O

 

Alternate: TIMER2_CH3, TIMER13_CH0,

TIMER0_CH2_ON, SPI1_SCK(5)

 

 

 

 

Additional: ADC_IN9

 

PB2

 

20

 

I/O

 

5VT

Default: PB2

Alternate: TIMER2_ETI

 

 

 

 

Default: PB10

PB10

21

I/O

5VT

Alternate: I2C0_SCL(3),I2C1_SCL(5), SPI1_IO2(5),

 

 

 

 

SPI1_SCK(5)

 

 

 

 

Default: PB11

PB11

22

I/O

5VT

Alternate: I2C0_SDA(3),I2C1_SDA(5), EVENTOUT,

 

 

 

 

SPI1_IO3(5)

VSS

23

P

 

Default: VSS

VDD

24

P

 

Default: VDD

 

 

 

 

Default: PB12

PB12

25

I/O

5VT

Alternate: SPI0_NSS(3), SPI1_NSS(5), TIMER0_BRKIN,

 

 

 

 

I2C1_SMBA(5), EVENTOUT

 

 

 

 

Default: PB13

PB13

26

I/O

5VT

Alternate: SPI0_SCK(3), SPI1_SCK(5), TIMER0_CH0_ON,

 

 

 

 

I2C1_TXFRAME(5), I2C1_SCL(5)

 

 

 

 

Default: PB14

PB14

27

I/O

5VT

Alternate: SPI0_MISO(3), SPI1_MISO(5),

 

 

 

 

TIMER0_CH1_ON, TIMER14_CH0(5), I2C1_SDA(5)

 

 

 

 

Default: PB15

 

 

 

 

Alternate: SPI0_MOSI(3), SPI1_MOSI(5),

PB15

28

I/O

5VT

TIMER0_CH2_ON, TIMER14_CH0_ON(5),

 

 

 

 

TIMER14_CH1(5)

 

 

 

 

Additional: RTC_REFIN, WKUP6

 

 

Pin Name

 

Pins

Pin Type(1)

I/O Level(2)

 

Functions description

 

PA8

 

29

 

I/O

 

5VT

Default: PA8

Alternate: USART0_CK, TIMER0_CH0, CK_OUT, USART1_TX(4), EVENTOUT

 

PA9

 

30

 

I/O

 

5VT

Default: PA9

Alternate: USART0_TX, TIMER0_CH1, TIMER14_BRKIN(5), I2C0_SCL, CK_OUT

 

PA10

 

31

 

I/O

 

5VT

Default: PA10

Alternate: USART0_RX, TIMER0_CH2,

TIMER16_BRKIN, I2C0_SDA

 

PA11

 

32

 

I/O

 

5VT

Default: PA11

Alternate: USART0_CTS, TIMER0_CH3, CMP_OUT, EVENTOUT, SPI1_IO2(5), I2C0_SMBA, I2C1_SCL(5)

 

PA12

 

33

 

I/O

 

5VT

Default: PA12

Alternate: USART0_RTS, TIMER0_ETI, EVENTOUT, SPI1_IO3(5), I2C0_TXFRAME, I2C1_SDA(5)

 

PA13

 

34

 

I/O

 

5VT

Default: PA13/SWDIO

Alternate: SWDIO, IFRP_OUT, SPI1_MISO(5)

 

PF6

 

35

 

I/O

 

5VT

Default: PF6

Alternate: I2C0_SCL(3), I2C1_SCL(5)

 

PF7

 

36

 

I/O

 

5VT

Default: PF7

Alternate: I2C0_SDA(3), I2C1_SDA(5)

 

PA14

 

37

 

I/O

 

5VT

Default: PA14/SWCLK

Alternate: USART0_TX(3), USART1_TX(4), SWCLK, SPI1_MOSI(5)

 

PA15

 

38

 

I/O

 

5VT

Default: PA15

Alternate: SPI0_NSS, I2S0_WS, USART0_RX(3), USART1_RX(4), SPI1_NSS(5), EVENTOUT

 

PB3

 

39

 

I/O

 

5VT

Default: PB3

Alternate: SPI0_SCK, I2S0_CK, EVENTOUT

 

PB4

 

40

 

I/O

 

5VT

Default: PB4

Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0, EVENTOUT, I2C0_TXFRAME, TIMER16_BRKIN

 

 

PB5

 

 

41

 

 

I/O

 

 

5VT

Default: PB5

Alternate: SPI0_MOSI,I2S0_SD, I2C0_SMBA, TIMER15_BRKIN, TIMER2_CH1

Additional: WKUP5

 

PB6

 

42

 

I/O

 

5VT

Default: PB6

Alternate: I2C0_SCL, USART0_TX, TIMER15_CH0_ON

 

PB7

 

43

 

I/O

 

5VT

Default: PB7

Alternate:I2C0_SDA, USART0_RX,TIMER16_CH0_ON

BOOT0

44

I

 

Default: BOOT0

 

PB8

 

45

 

I/O

 

5VT

Default: PB8

Alternate: I2C0_SCL, TIMER15_CH0

 

PB9

 

46

 

I/O

 

5VT

Default: PB9

Alternate: I2C0_SDA, IFRP_OUT, TIMER16_CH0,

 

 

Pin Name

 

Pins

Pin Type(1)

I/O Level(2)

 

Functions description

 

 

 

 

EVENTOUT, I2S0_MCK, SPI1_NSS(5)

VSS

47

P

 

Default: VSS

VDD

48

P

 

Default: VDD

Notes:
(1)Type: I = input, O = output, P = power.
(2)I/O Level: 5VT = 5 V tolerant.
(3)Functions are available on GD32E230C4 devices only.
(4)Functions are available on GD32E230C8/6 devices.
(5)Functions are available on GD32E230C8 devices only.

ARM® Cortex®-M23 core

The Cortex-M23 processor is an energy-efficient processor with a very low gate count. It is intended to be used for microcontroller and deeply embedded applications that require an area-optimized processor. The processor is highly configurable enabling a wide range of implementations from those requiring memory protection and powerful trace technology to cost sensitive devices requiring minimal area, while delivering outstanding computational performance and an advanced system response to interrupts.
32-bit ARM® Cortex®-M23 processor core
Up to 72 MHz operation frequency
Single-cycle multiplication and hardware divider
Ultra-low power, energy-efficient operation
Excellent code density
Integrated Nested Vectored Interrupt Controller (NVIC)
24-bit SysTick timer

The Cortex®-M23 processor is based on the ARMv8-M architecture and supports both Thumb and Thumb-2 instruction sets. Some system peripherals listed below are also provided by Cortex®-M23:
Internal Bus Matrix connected with AHB master, Serial Wire Debug Port and Single-cycle IO port
Nested Vectored Interrupt Controller (NVIC)
Breakpoint Unit(BPU)
Data Watchpoint and Trace (DWT)
Serial Wire Debug Port


Embedded memory

Up to 64 Kbytes of Flash memory
Up to 8 Kbytes of SRAM with hardware parity checking

64 Kbytes of inner Flash and 8 Kbytes of inner SRAM at most is available for storing programs and data, both accessed (R/W) at CPU clock speed with 0~2 wait states. Table 2-3. GD32E230xx memory map shows the memory map of the GD32E230xx series of devices, including code, SRAM, peripheral, and other pre-defined regions.

Clock, reset and supply management

Internal 8 MHz factory-trimmed RC and external 4 to 32 MHz crystal oscillator

Internal 28 MHz RC oscillator
Internal 40 KHz RC calibrated oscillator and external 32.768 KHz crystal oscillator
Integrated system clock PLL
1.8 to 3.6 V application supply and I/Os
Supply Supervisor: POR (Power On Reset), PDR (Power Down Reset), and low voltage detector (LVD)
The Clock Control Unit (CCU) provides a range of oscillator and clock functions. These include speed internal RC oscillator and external crystal oscillator, high speed and low speed two types. Several prescalers allow the frequency configuration of the AHB and two APB domains. The maximum frequency of the AHB, APB2 and APB1 domains is 72 MHz/72 MHz/72 MHz. See Figure 2-8. GD32E230xx clock tree for details on the clock tree.
The Reset Control Unit (RCU) controls three kinds of reset: system reset resets the processor core and peripheral IP components. Power-on reset (POR) and power-down reset (PDR) are always active, and ensures proper operation starting from 1.71 V and down to 1.67 V. The device remains in reset mode when VDD is below a specified threshold. The embedded low voltage detector (LVD) monitors the power supply, compares it to the voltage threshold and generates an interrupt as a warning message for leading the MCU into security.
Power supply schemes:
VDD range: 1.8 to 3.6 V, external power supply for I/Os and the internal regulator. Provided externally through VDD pins.
VSSA, VDDA range: 1.8 to 3.6 V, external analog power supplies for ADC, reset blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.
VBAK range: 1.8 to 3.6 V, power supply for RTC, external clock 32 KHz oscillator and backup registers (through power switch) when VDD is not present.

Boot modes

At startup, boot pins are used to select one of three boot options:
Boot from main Flash memory (default)
Boot from system memory
Boot from on-chip SRAM

In default condition, boot from main Flash memory is selected. The boot loader is located in the internal boot ROM memory (system memory). It is used to reprogram the Flash memory by using USART0 (PA9 and PA10) or USART1 (PA14 and PA15 or PA2 and PA3).

Power saving modes

The MCU supports three kinds of power saving modes to achieve even lower power consumption. They are sleep mode, deep-sleep mode, and standby mode. These operating modes reduce the power consumption and allow the application to achieve the best balance

between the CPU operating time, speed and power consumption.
Sleep mode
In sleep mode, only the clock of CPU core is off. All peripherals continue to operate and any interrupt/event can wake up the system.
Deep-sleep mode
In deep-sleep mode, all clocks in the 1.2V domain are off, and all of the high speed crystal oscillator (IRC8M, HXTAL) and PLL are disabled. Only the contents of SRAM and registers are retained. Any interrupt or wakeup event from EXTI lines can wake up the system from the deep-sleep mode including the 16 external lines, the RTC alarm, RTC tamper and timestamp, CMP output, LVD output and USART wakeup. When exiting the deep-sleep mode, the IRC8M is selected as the system clock.
Standby mode
In standby mode, the whole 1.2V domain is power off, the LDO is shut down, and all of IRC8M, HXTAL and PLL are disabled. The contents of SRAM and registers (except backup registers) are lost. There are four wakeup sources for the standby mode, including the external reset from NRST pin, the RTC alarm, the FWDGT reset, and the rising edge on WKUP pin.

Analog to digital converter (ADC)

12-bit SAR ADC's conversion rate is up to 2 MSPS
12-bit, 10-bit, 8-bit or 6-bit configurable resolution
Hardware oversampling ratio adjustable from 2 to 256x improves resolution to 16-bit
Input voltage range: VSSA to VDDA
Temperature sensor

One 12-bit 2 MSPS multi-channel ADC is integrated in the device. It has a total of 12 multiplexed channels: up to 10 external channels, 1 channel for internal temperature sensor (VSENSE) and 1 channel for internal reference voltage (VREFINT). The input voltage range is between VSSA and VDDA. An on-chip hardware oversampling scheme improves performance while off-loading the related computational burden from the CPU. An analog watchdog block can be used to detect the channels, which are required to remain within a specific threshold window. A configurable channel management block can be used to perform conversions in single, continuous, scan or discontinuous mode to support more advanced use.
The ADC can be triggered from the events generated by the general level 0 timers (TIMERx) and the advanced timer (TIMER0) with internal connection. The temperature sensor can be used to generate a voltage that varies linearly with temperature. It is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage in a digital value.

DMA

5 channels DMA controller
Peripherals supported: Timers, ADC, SPIs, I2Cs, USARTs and I2S

The flexible general-purpose DMA controllers provide a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other system functions. Three types of access method are supported: peripheral to memory, memory to peripheral, memory to memory.
Each channel is connected to fixed hardware DMA requests. The priorities of DMA channel requests are determined by software configuration and hardware channel number. Transfer size of source and destination are independent and configurable.

General-purpose inputs/outputs (GPIOs)

Up to 39 fast GPIOs, all mappable on 16 external interrupt lines
Analog input/output configurable
Alternate function input/output configurable

There are up to 39 general purpose I/O pins (GPIO) in GD32E230xx, named PA0 ~ PA15 and PB0 ~ PB15, PC13 ~ PC15, PF0 ~ PF1, PF6 ~ PF7 to implement logic input/output functions. Each of the GPIO ports has related control and configuration registers to satisfy the requirements of specific applications. The external interrupts on the GPIO pins of the device have related control and configuration registers in the Interrupt/event controller (EXTI). The GPIO ports are pin-shared with other alternative functions (AFs) to obtain maximum flexibility on the package pins. Each of the GPIO pins can be configured by software as output (push- pull open-drain or analog), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current capable except for analog inputs.

Timers and PWM generation

One 16-bit advanced timer (TIMER0), up to five 16-bit general timers (TIMER2, TIMER13
~ TIMER16), and one 16-bit basic timer (TIMER5)
Up to 4 independent channels of PWM, output compare or input capture for each general timer and external trigger input
16-bit, motor control PWM advanced timer with programmable dead-time generation for output match
Encoder interface controller with two inputs using quadrature decoder
24-bit SysTick timer down counter
2 watchdog timers (free watchdog timer and window watchdog timer)

The advanced timer (TIMER0) can be used as a three-phase PWM multiplexed on 6 channels.

It has complementary PWM outputs with programmable dead-time generation. It can also be used as a complete general timer. The 4 independent channels can be used for input capture, output compare, PWM generation (edge- or center- aligned counting modes) and single pulse mode output. If configured as a general 16-bit timer, it has the same functions as the TIMERx timer. It can be synchronized with external signals or to interconnect with other general timers together which have the same architecture and features.
The general timer can be used for a variety of purposes including general time, input signal pulse width measurement or output waveform generation such as a single pulse generation or PWM output, up to 4 independent channels for input capture/output compare. TIMER2 is based on a 16-bit auto-reload up/down counter and a 16-bit prescaler. TIMER13 ~ TIMER16 is based on a 16-bit auto-reload up counter and a 16-bit prescaler. The general timer also supports an encoder interface with two inputs using quadrature decoder.
The basic timer, known as TIMER5 can also be used as a simple 16-bit time base.

The GD32E230xx have two watchdog peripherals, free watchdog and window watchdog. They offer a combination of high safety level, flexibility of use and timing accuracy.
The free watchdog timer includes a 12-bit down-counting counter and an 8-bit prescaler. It is clocked from an independent 40 KHz internal RC and as it operates independently of the main clock, it can operate in deep-sleep and standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management.
The window watchdog is based on a 7-bit down counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early wakeup interrupt capability and the counter can be frozen in debug mode.
The SysTick timer is dedicated for OS, but could also be used as a standard down counter. The features are shown below:
A 24-bit down counter
Auto reload capability
Maskable system interrupt generation when the counter reaches 0
Programmable clock source


Real time clock (RTC)

Independent binary-coded decimal (BCD) format timer/counter with five 32-bit backup registers.
Calendar with subsecond, second, minute, hour, week day, date, year and month automatically correction
Alarm function with wake up from deep-sleep and standby mode capability
On-the-fly correction for synchronization with master clock. Digital calibration with 0.954 ppm resolution for compensation of quartz crystal inaccuracy.

The real time clock is an independent timer which provides a set of continuously running counters in backup registers to provide a real calendar function, and provides an alarm interrupt or an expected interrupt. It is not reset by a system or power reset, or when the device wakes up from standby mode. In the RTC unit, there are two prescalers used for implementing the calendar and other functions. One prescaler is a 7-bit asynchronous prescaler and the other is a 15-bit synchronous prescaler.

Inter-integrated circuit (I2C)

Up to two I2C bus interfaces can support both master and slave mode with a frequency up to 1 MHz (Fast mode plus)
Provide arbitration function, optional PEC (packet error checking) generation and checking
Supports 7-bit and 10-bit addressing mode and general call addressing mode
Supports SAM_V mode

The I2C interface is an internal circuit allowing communication with an external I2C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line (SDA) and a serial clock line (SCL). The I2C module provides different data transfer rates: up to 100 KHz in standard mode, up to 400 KHz in the fast mode and up to 1 MHz in the fast mode plus. The I2C module also has an arbitration detect function to prevent the situation where more than one master attempts to transmit data to the I2C bus at the same time. A CRC-8 calculator is also provided in I2C interface to perform packet error checking for I2C data.

Serial peripheral interface (SPI)

Up to two SPI interfaces with a frequency of up to 18 MHz
Support both master and slave mode
Hardware CRC calculation and transmit automatic CRC error checking
Separate transmit and receive 32-bit FIFO with DMA capability (only in SPI1)
Data frame size can be 4 to 16 bits (only in SPI1)
Quad-SPI configuration available in master mode (only in SPI1)

The SPI interface uses 4 pins, among which are the serial data input and output lines (MISO & MOSI), the clock line (SCK) and the slave select line (NSS). Both SPIs can be served by the DMA controller. The SPI interface may be used for a variety of purposes, including simplex synchronous transfers on two lines with a possible bidirectional data line or reliable communication using CRC checking. Specially, SPI1 has separate transmit and receive 32- bit FIFO with DMA capability and its data frame size can be 4 to 16 bits. Quad-SPI master mode is also supported in SPI1.

Universal synchronous asynchronous receiver transmitter (USART)
Up to two USARTs with operating frequency up to 4.5 MBits/s
Supports both asynchronous and clocked synchronous serial communication modes
IrDA SIR encoder and decoder support
LIN break generation and detection
ISO 7816-3 compliant smart card interface

The USART (USART0, USART1) are used to translate data between parallel and serial interfaces, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. It is also commonly used for RS-232 standard communication. The USART includes a programmable baud rate generator which is capable of dividing the system clock to produce a dedicated clock for the USART transmitter and receiver. The USART also supports DMA function for high speed data communication.

Inter-IC sound (I2S)

One I2S bus Interfaces with sampling frequency from 8 KHz to 192 KHz, multiplexed with SPI0
Support either master or slave mode

The Inter-IC sound (I2S) bus provides a standard communication interface for digital audio applications by 3-wire serial lines. GD32E230xx contain an I2S-bus interface that can be operated with 16/32 bit resolution in master or slave mode, pin multiplexed with SPI0. The audio sampling frequency from 8 KHz to 192 KHz is supported with less than 0.5% accuracy error.

Comparators (CMP)

One fast rail-to-rail low-power comparators with software configurable
Programmable reference voltage (internal or external I/O)

One Comparator (CMP) is implemented within the devices. It can wake up from deep-sleep mode to generate interrupts and breaks for the timers and also can be combined as a window comparator. The internal voltage reference is also connected to ADC_IN17 input channel of the ADC.

Debug mode

Serial wire debug port

Debug capabilities can be accessed by a debug tool via Serial Wire (SW - Debug Port).


Package and operation temperature

LQFP48 (GD32E230CxTx), LQFP32 (GD32E230KxTx), QFN32 (GD32E230KxUx), QFN28 (GD32E230GxUx), TSSOP20 (GD32E230FxPx) and LGA20 (GD32E230FxVx).
Operation temperature range: -40°C to +85°C (industrial level)

扫二维码用手机看

uA级别智能门锁低功耗雷达模块让门锁更加智能省电节约功耗

uA级别智能门锁低功耗雷达模块让门锁更加智能省电节约功耗,指纹门锁并不是什么新鲜事,我相信每个人都很熟悉。随着近年来智能家居的逐步普及,指纹门锁也进入了成千上万的家庭。今天的功耗雷达模块指纹门锁不仅消除了繁琐的钥匙,而且还提供了各种智能功能,uA级别智能门锁低功耗雷达模块用在智能门锁上,可以实现门锁的智能感应屏幕,使电池寿命延长3-5倍,如与其他智能家居连接,成为智能场景的开关。所以今天的指纹门锁更被称为智能门锁。 今天,让我们来谈谈功耗雷达模块智能门锁的安全性。希望能让更多想知道智能门锁的朋友认识下。 指纹识别是智能门锁的核心 指纹识别技术在我们的智能手机上随处可见。从以前的实体指纹识别到屏幕下的指纹识别,可以说指纹识别技术已经相当成熟。指纹识别可以说是整个uA级低功耗雷达模块智能门锁的核心。 目前主要有三种常见的指纹识别方法,即光学指纹识别、半导体指纹识别和超声指纹识别。 光学指纹识别 让我们先谈谈光学指纹识别的原理实际上是光的反射。我们都知道指纹本身是不均匀的。当光照射到我们的指纹上时,它会反射,光接收器可以通过接收反射的光来绘制我们的指纹。就像激光雷达测绘一样。 光学指纹识别通常出现在打卡机上,手机上的屏幕指纹识别技术也使用光学指纹识别。今天的光学指纹识别已经达到了非常快的识别速度。 然而,光学指纹识别有一个缺点,即硬件上的活体识别无法实现,容易被指模破解。通常,活体识别是通过软件算法进行的。如果算法处理不当,很容易翻车。 此外,光学指纹识别也容易受到液体的影响,湿手解锁的成功率也会下降。 超声指纹识别 超声指纹识别也被称为射频指纹识别,其原理与光学类型相似,但超声波使用声波反射,实际上是声纳的缩小版本。因为使用声波,不要担心水折射会降低识别率,所以超声指纹识别可以湿手解锁。然而,超声指纹识别在防破解方面与光学类型一样,不能实现硬件,可以被指模破解,活体识别仍然依赖于算法。 半导体指纹识别 半导体指纹识别主要采用电容、电场(即我们所说的电感)、温度和压力原理来实现指纹图像的收集。当用户将手指放在前面时,皮肤形成电容阵列的极板,电容阵列的背面是绝缘极板。由于不同区域指纹的脊柱与谷物之间的距离也不同,因此每个单元的电容量随之变化,从而获得指纹图像。半导体指纹识别具有价格低、体积小、识别率高的优点,因此大多数uA级低功耗雷达模块智能门锁都采用了这种方案。半导体指纹识别的另一个功能是活体识别。传统的硅胶指模无法破解。 当然,这并不意味着半导体可以百分识别活体。所谓的半导体指纹识别活体检测不使用指纹活体体征。本质上,它取决于皮肤的材料特性,这意味着虽然传统的硅胶指模无法破解。 一般来说,无论哪种指纹识别,都有可能被破解,只是说破解的水平。然而,今天的指纹识别,无论是硬件生活识别还是算法生活识别,都相对成熟,很难破解。毕竟,都可以通过支付级别的认证,大大保证安全。 目前,市场上大多数智能门锁仍将保留钥匙孔。除了指纹解锁外,用户还可以用传统钥匙开门。留下钥匙孔的主要目的是在指纹识别故障或智能门锁耗尽时仍有开门的方法。但由于有钥匙孔,它表明它可以通过技术手段解锁。 目前市场上的锁等级可分为A、B、C三个等级,这三个等级主要是通过防暴开锁和防技术开锁的程度来区分的。A级锁要求技术解锁时间不少于1分钟,B级锁要求不少于5分钟。即使是高级别的C级锁也只要求技术解锁时间不少于10分钟。 也就是说,现在市场上大多数门锁,无论是什么级别,在专业的解锁大师面前都糊,只不过是时间长短。 安全是重要的,是否安全增加了人们对uA级别低功耗雷达模块智能门锁安全的担忧。事实上,现在到处都是摄像头,强大的人脸识别,以及移动支付的出现,使家庭现金减少,所有这些都使得入室盗窃的成本急剧上升,近年来各省市的入室盗窃几乎呈悬崖状下降。 换句话说,无论锁有多安全,无论锁有多难打开,都可能比在门口安装摄像头更具威慑力。 因此,担心uA级别低功耗雷达模块智能门锁是否不安全可能意义不大。毕竟,家里的防盗锁可能不安全。我们应该更加关注门锁能给我们带来多少便利。 我们要考虑的是智能门锁的兼容性和通用性。毕竟,智能门锁近年来才流行起来。大多数人在后期将普通机械门锁升级为智能门锁。因此,智能门锁能否与原门兼容是非常重要的。如果不兼容,发现无法安装是一件非常麻烦的事情。 uA级别低功耗雷达模块智能门锁主要是为了避免带钥匙的麻烦。因此,智能门锁的便利性尤为重要。便利性主要体现在指纹的识别率上。手指受伤导致指纹磨损或老年人指纹较浅。智能门锁能否识别是非常重要的。 当然,如果指纹真的失效,是否有其他解锁方案,如密码解锁或NFC解锁。还需要注意密码解锁是否有虚假密码等防窥镜措施。 当然,智能门锁的耐久性也是一个需要特别注意的地方。uA级别低功耗雷达模块智能门锁主要依靠内部电池供电,这就要求智能门锁的耐久性尽可能好,否则经常充电或更换电池会非常麻烦。 智能门锁低功耗雷达模块:让门锁更加智能省电节约功耗 在当今信息化时代,智能门锁已经成为人们生活中不可或缺的一部分。对于门锁制造商来说,如何提高门锁的安全性、实用性和便利性,成为他们面对的重要课题。随着人们对门锁智能化的需求越来越高,门锁的能耗问题也成为了门锁制造商需要重视的问题。为此,越来越多的门锁制造商开始推出以低功耗为主题的系列产品。在这样的背景下,智能门锁低功耗雷达模块应运而生。 智能门锁低功耗雷达模块是一种新型技术,其采取雷达技术对门锁周围的物体进行探测,一旦发现门锁附近有人靠近,便会将门锁自动解锁,无需使用钥匙。同时,在保持智能控制的前提下,实现了门锁省电、节约功耗,延长门锁使用寿命。 在使用智能门锁低功耗雷达模块的门锁中,控制电路和自动解锁机制是关键的部件。控制电路采用先进的芯片技术,通过优秀的功耗控制以实现模块化管理。而自动解锁机制不仅可以通过微波信号控制实现门锁的无钥匙解锁,还能够在门锁未处理的情况下自动锁定,保障门锁的安全。 智能门锁低功耗雷达模块的主要特点是:低功耗、高灵敏度和高可靠性。该模块在进行人体检测时,可以远距离探测到距离为5-7米远处的人体信号,目标检测速度极快,而且对门锁周围的环境要求不高。同时,该模块采用了自适应自动补偿技术,能够根据不同环境的变化自动调整信号发射和接收参数,减小误检率。 在使用智能门锁低功耗雷达模块的门锁中,其功耗可以做到非常低,一组电池能够支持门锁持续使用几年左右。而且这样的智能门锁除了具有自动解锁的功能,还可与APP相互匹配,实现了远程操作的便捷性。 总的来说,智能门锁低功耗雷达模块的问世,解决了门锁安全性和省电节省方面的问题,是智能门锁材料不可或缺的一部分。作为门锁制造商,只有不断创新,利用这种新型技术,将会在行业中占据重要的地位。 除了上文所述的主要特点和优势,智能门锁低功耗雷达模块还具有以下几点: 1. 实时监测门锁周围环境变化,通过物体的距离体积和运动来确定是否有人靠近门锁,并控制门锁的开启或关闭,使得门锁更加智能化。 2. 可对门锁附件进行检测,如门挂、门应急照明灯以及紧急呼叫按钮等,并及时给出响应,确保门锁能够正常运作。这样,门锁在不受干扰的情况下,能够 保持安全通道。 3. 通过智能学习技术,能够自适应网站多种环境的变化,让智能门锁低功耗雷达模块更加准确和精细的控制门锁的开关,节约能耗并延长使用寿命。 4. 能够与其他智能电器相连,如智能家居系统、电视等,形成智能家居生态圈,更好地控制家庭访客进出,让生活更加方便。 综上所述,智能门锁低功耗雷达模块的出现,对提升门锁能耗管理和智能化有着重要作用。门锁制造商只有将这些新型技术运用到门锁产品中,才能更加贴合用户需求,满足消费市场的日益增长的智能化需求。
点击查看更多
14
2022-01

微波雷达传感器雷达感应浴室镜上的应用

发布时间: : 2022-01--14
微波雷达传感器雷达感应浴室镜上的应用,如今,家用电器的智能化已成为一种常态,越来越多的人开始在自己的浴室里安装智能浴室镜。但是还有很多人对智能浴镜的理解还不够深入,今天就来说说这个话题。 什么是智能浴室镜?智慧型浴室镜,顾名思义,就是卫浴镜子智能化升级,入门级产品基本具备了彩灯和镜面触摸功能,更高档次的产品安装有微波雷达传感器智能感应,当感应到有人接近到一定距离即可开启亮灯或者亮屏操作,也可三色无极调,智能除雾,语音交互,日程安排备忘,甚至在镜子上看电视,听音乐,气象预报,问题查询,智能控制,健康管理等。 智能化雷达感应浴室镜与普通镜的区别,为什么要选TA?,就功能而言,普通浴镜价格用它没有什么压力!而且雷达感应智能浴镜会让人犹豫不决是否“值得一看”。就功能和应用而言,普通浴镜功能单一,而微波雷达传感器智能浴室镜功能创新:镜子灯光色温和亮度可以自由调节,镜面还可以湿手触控,智能除雾,既环保又健康! 尽管智能浴镜比较新颖,但功能丰富,体验感更好,特别是入门级的智能浴镜,具有基础智能化功能,真的适合想体验下智能化的小伙伴们。 给卫生间安装微波雷达传感器浴室镜安装注意什么? ①确定智能浴室镜的安装位置,因为是安装时在墙壁上打孔,一旦安装后一般无法移动位置。 ②在选购雷达感应智能浴室镜时,根据安装位置确定镜子的形状和尺寸。 ③确定智能浴镜的安装位置后,在布线时为镜子预留好电源线。 ④确定微波雷达传感器智能浴镜的安装高度,一般智能浴镜的标准安装高度约85cm(从地砖到镜子底),具体安装高度要根据家庭成员的身高及使用习惯来决定。 ⑤镜面遇到污渍,可用酒精或30%清洁稀释液擦洗,平时可用干毛巾养护,注意多通风。
查看详情 查看详情
07
2022-02

冰箱屏幕唤醒微波雷达传感器屏幕唤醒性能强悍智能感应

发布时间: : 2022-02--07
冰箱屏幕唤醒微波雷达传感器屏幕唤醒性能强悍智能感应,随着年轻一代消费观念的转变,冰箱作为厨房和客厅的核心家用电器之一,也升级为健康、智能、高端的形象。在新产品发布会上,推出了大屏幕的冰箱,不仅屏幕优秀,而且微波雷达传感器屏幕唤醒性能强大。 大屏智能互联,听歌看剧购物新体验 冰箱植入冰箱屏幕唤醒微波雷达传感器触摸屏,重新定义了冰箱的核心价值。除了冰箱的保鲜功能外,该显示屏还集控制中心、娱乐中心和购物中心于一体,让您在无聊的烹饪过程中不会落后于听歌、看剧和购物。新的烹饪体验是前所未有的。 不仅如此,21.5英寸的屏幕也是整个房子智能互联的互动入口。未来的家将是一个充满屏幕的家。冰箱可以通过微波雷达传感器屏幕与家庭智能产品连接。烹饪时,你可以通过冰箱观看洗衣机的工作,当你不能腾出手来照顾孩子时,你可以通过冰箱屏幕连接家庭摄像头,看到孩子的情况。冰箱的推出标志着屏幕上的未来之家正在迅速到来。 管理RFID食材,建立健康的家庭生活 据报道,5G冰箱配备了RFID食品材料管理模块,用户将自动记录和储存食品,无需操作。此外,冰箱还可以追溯食品来源,监控食品材料从诞生到用户的整个过程,以确保食品安全;当食品即将过期时,冰箱会自动提醒用户提供健康的饮食和生活。 风冷无霜,清新无痕 冰箱的出现是人类延长食品保存期的一项伟大发明。一个好的冰箱必须有很强的保存能力。5g冰箱采用双360度循环供气系统。智能补水功能使食品原料享受全方位保鲜,紧紧锁住水分和营养,防止食品原料越来越干燥。此外,该送风系统可将其送到冰箱的每个角落,消除每个储藏空间的温差,减少手工除霜的麻烦,使食品不再粘连。 进口电诱导保鲜技术,创新黑科技加持 针对传统冰箱保存日期不够长的痛点,5g互联网冰箱采用日本进口电诱导保存技术,不仅可以实现水果储存冰箱2周以上不腐烂发霉,还可以使蔬菜储存25天不发黄、不起皱。在-1℃~-5℃下,配料不易冻结,储存时间较长。冷冻食品解冻后无血,营养大化。此外,微波雷达传感器5g冰箱还支持-7℃~-24℃的温度调节,以满足不同配料的储存要求。 180°矢量变频,省电时更安静 一台好的压缩机对冰箱至关重要。冰箱配备了变频压缩机。180°矢量变频技术可根据冷藏室和冷冻室的需要有效提供冷却,达到食品原料的保鲜效果。180°矢量变频技术不仅大大降低了功耗,而且以非常低的分贝操作机器。保鲜效果和节能安静的技术冰箱可以在许多智能冰箱中占有一席之地,仅仅通过这种搭配就吸引了许多消费者的青睐。 配备天然草本滤芯,不再担心串味 各种成分一起储存在冰箱中,难以避免串味。此外,冰箱内容易滋生细菌,冰箱总是有异味。针对这一问题,冰箱创新配置了天然草本杀菌除臭滤芯。该滤芯提取了多种天然草本活性因子,可有效杀菌99.9%,抑制冰箱异味,保持食材新鲜。不仅如此,这个草本滤芯可以更快、更方便、更无忧地拆卸。家里有冰箱,开始健康保鲜的生活。 目前,冰箱屏幕唤醒微波雷达传感器正在继续推动家庭物联网的快速普及,相信在不久的将来,智能家电将成为互动终端。
查看详情 查看详情
03
2023-06

主从机一体蓝牙模块的应用与优势

发布时间: : 2023-06--03
随着科技快速发展,蓝牙技术在各个行业应用中变得越来越广泛,而作为蓝牙技术的基础的组件之一——蓝牙模块,在市场上也有着愈发重要的地位。今天,我们要来讲一下一种非常热门的蓝牙模块:主从机一体蓝牙模块。在这篇文章中,我们将对于主从机一体蓝牙模块的应用场景、技术参数以及优势进行详细的探讨,希望能够对于读者深度了解这种蓝牙模块的特性。 一、主从机一体蓝牙模块的基本概念是什么? 主从机一体蓝牙模块是一种蓝牙通讯模块,它支持蓝牙4.0BLE标准,拥有低功耗与广域通讯等优势,在无线传输控制方面表现得非常出色,是广泛应用于各种物联网设备的一种通讯模块。它采用NRF51822作为其主控芯片,支持混合信号电路与数字信号处理技术,支持多种蓝牙协议以及广泛的传输控制方式,包括BLE、RSSI定位、广告信息传送等等,具有非常广泛的应用场景。 二、主从机一体蓝牙模块有哪些应用场景? 1. 智能硬件设备:主从机一体蓝牙模块可以应用于各类智能硬件领域,包括智能家居、智能门锁、智能手环、智能车载等等。以智能门锁为例,智能门锁可以通过蓝牙连接与用户的手机以及其他智能设备进行通讯与联动,更好地实现人机互动。 2. 钱包支付系统:主从机一体蓝牙模块也可以应用于钱包支付系统,将智能手表、手机等设备进行蓝牙连接,实现更为便捷、实时、安全的支付体验。 3. 智能健康监测设备:主从机一体蓝牙模块还可以应用于智能医疗设备、智能健康监测设备中,利用蓝牙技术将设备与手机、电脑等设备连接,更好地实现智能健康监测功能。 三、主从机一体蓝牙模块的技术参数是什么? 1. 蓝牙协议:BLE4.0 2. 频段:2.4 GHz 3. 发射功率:0 dBm 4. 通讯距离:50m 5. 工作电压:2.0-3.6V 6. 支持的传输速率:1Mbps,2Mbps,250Kbps 7. 支持高级蓝牙协议栈 8. 支持传输模式:主机模式、从机模式、主从模式 9. 支持NFC 四、主从机一体蓝牙模块有哪些优势? 1. 低功耗:相较于传统的蓝牙模块,主从机一体蓝牙模块具有更低的功耗,能够更好地适应物联网设备的长时间运行需求。 2. 高速率传输:主从机一体蓝牙模块不仅支持高速率传输,而且具有稳定的通讯质量,能够更好地应对各种应用场景。 3. 易于集成:主从机一体蓝牙模块体积小、重量轻,易于集成到各种智能设备中,可以更好地优化整个系统的性能。 4. 多种应用场景:由于主从机一体蓝牙模块支持广泛的传输控制方式和协议,它适用于多种智能硬件设备中,可以更好地满足用户的需求。 5. 简化开发流程:主从机一体蓝牙模块内置高级蓝牙协议栈,可以帮助开发者简化开发流程,减少系统的开发周期。 总的来说,主从机一体蓝牙模块具有低功耗、高速率传输、易于集成、多种应用场景和简化开发流程等优势,越来越多的智能设备都开始采用主从机一体蓝牙模块,为用户提供更好的使用体验。 五、如何选择主从机一体蓝牙模块? 对于不同的应用场景,用户在选择主从机一体蓝牙模块时,应该根据设备的功能需求、通讯距离、功耗要求等因素,综合考虑选择合适的主从机一体蓝牙模块。在购买主从机一体蓝牙模块的时候,用户应该选择质量可靠、性能稳定、价格合理的品牌,同时注意了解品牌的资质、生产工艺等情况,确保所选的蓝牙模块能够满足自己的需求。 六、结语 总的来说,主从机一体蓝牙模块作为一种蓝牙通讯模块,已经广泛应用于各种智能设备中,对于促进智能物联网的发展,提高智能设备用户体验起到了积的促进作用。在未来,随着智能设备市场的发展,主从机一体蓝牙模块的使用会更加广泛,也希望未来的主从机一体蓝牙模块能够不断优化用户体验,为用户提供更好的服务。
查看详情 查看详情
03
2023-06

如何正确选择wifi蓝牙模块电源电压以提升性能

发布时间: : 2023-06--03
如果您正在寻找一款优秀的wifi蓝牙模块,那么很可能您已经开始关注电源电压方面的问题了。因为电源电压与模块的性能息息相关,正确的电源电压能够使模块得到佳的性能表现,从而为您提供更好的使用体验。 在本篇文章中,我们将一起探讨这个问题,找出如何正确选择wifi蓝牙模块电源电压,以提升性能。 了解wifi蓝牙模块的工作原理 首先,让我们来简要了解一下wifi蓝牙模块。它是一种用于在设备间进行无线通信的模块,广泛应用于智能家居、物联网等场景中。在选择wifi蓝牙模块时,我们需要强调一些关键的因素,如距离、带宽、功耗等,因为这些因素将直接影响到模块的工作效果。 关于电源电压 在以上因素中,电源电压也是一个至关重要的因素。正确的电源电压能够让wifi蓝牙模块有效地从电源中获取电能,进而为模块的正常工作提供保障。同时,如果电源电压不稳定或过高过低,模块可能无法达到佳的工作效果,还有可能会对模块的寿命造成损害。 在选择正确的电源电压时,应该根据模块的规格书或使用说明书中的建议值来进行。一般来说,建议电源电压应在模块规格书所列范围内,不得超出规定范围。 如果您需要更高的性能 在某些情况下,我们需要调整电源电压以提高wifi蓝牙模块的性能。这时候,我们可以使用由模块厂商提供的电源电压调整工具或者自己动手调整电源电压。 然而,这种自行调整电源电压的行为应该非常谨慎。对于大多数人来说,正确的电源电压已经足够满足需求了,而过高或者过低的电源电压很可能会降低模块的寿命,或者在长期使用中对设备造成损害。 正确选择电源电压是提升wifi蓝牙模块性能的重要因素之一。我们应当认真阅读模块的规格书或使用说明书中提供的电源电压信息,并确保我们的操作符合设备制造商的建议。 另外,如果您的需求超出标准电源电压范围,建议您寻找专业的技术支持,以获得更好的调整方法和操作建议。 接下来我将进一步补充一些关键的信息,以帮助您更好地了解如何选择wifi蓝牙模块的电源电压。 1. 了解模块的功耗和工作模式 在选择电源电压之前,我们需要首先了解模块的功耗和工作模式。因为不同的功耗和工作模式会对电源电压有不同的要求。例如,一些模块需要在高速传输模式下运行,这就需要更高的电源电压来支持其工作。而一些低功耗模式则需要更低的电源电压。 2. 注意电源转换效率 在使用wifi蓝牙模块时,我们需要在电池供电和AC/DC转换之间进行电源转换。这时候需要注意电源转换的效率,因为低效的转换将导致更高的功耗和更短的电池寿命。因此,我们应该选择高效的DC/DC转换器来提高电源转换效率。 3. 选择合适的电源稳压模块 在实际操作中,我们可能会面临电源电压不稳定的问题,这时候我们应该选择合适的电源稳压模块。这些模块能够帮助我们稳定输出电压,防止电源电压波动对设备造成影响。 4. 注意环境温度 我们需要注意设备的工作环境温度。因为温度对电源电压的稳定性和设备寿命都有重要的影响。一般来说,我们需要保持设备在规定的环境下工作,以避免环境温度过高或过低对设备工作的干扰。 综上所述,正确选择wifi蓝牙模块的电源电压需要我们了解模块的功耗和工作模式,注意电源转换效率、选择合适的电源稳压模块以及注意设备的工作环境温度。如果我们能够遵循这些步骤,就能够为我们的设备提供更好的使用体验,同时延长设备的寿命。
查看详情 查看详情
03
2023-06

Zigbee WiFi 蓝牙模块:简介、功能、优势与应用

发布时间: : 2023-06--03
随着物联网的日益普及,越来越多的电子设备需要进行无线连接和通信,而 Zigbee 、WiFi 和蓝牙三种无线通信技术已经成为市场上应用为广泛的三种技术。而 Zigbee WiFi 蓝牙模块是一种能够实现多种无线通信技术切换和兼容的模块,具有广泛的应用前景和市场需求。本文将从 Zigbee WiFi 蓝牙模块的简介、功能、优势和应用等多方面进行详细介绍。 一、Zigbee WiFi 蓝牙模块的简介 Zigbee WiFi 蓝牙模块是一种能够实现多种无线通信技术切换和兼容的模块。它是一种硬件设备,由 Zigbee 模块、WiFi 模块和蓝牙模块三个部分组成,用于实现不同无线设备之间的通信和数据传输。Zigbee WiFi 蓝牙模块广泛应用于物联网、智能家居、智能城市、智能医疗、工业自动化等领域,实现无线连接和通信。 二、Zigbee WiFi 蓝牙模块的功能 Zigbee WiFi 蓝牙模块具有以下功能: 1. 多种无线通信技术切换和兼容:Zigbee WiFi 蓝牙模块可以切换和兼容 Zigbee、WiFi 和蓝牙三种无线通信技术,实现不同设备之间的无线连接和通信,满足不同无线设备之间的通信需求。 2. 数据传输和控制:Zigbee WiFi 蓝牙模块支持数据传输和控制,可以实现设备之间的数据共享和控制操作,具有良好的通信效果和稳定性。 3. 低功耗和高效能:Zigbee WiFi 蓝牙模块支持低功耗和高效能,具有良好的节能和耐用性,可以满足长时间运行的需要。 4. 安全性:Zigbee WiFi 蓝牙模块支持安全性,具有较高的安全性和数据加密能力,可以保障设备和数据的安全。 三、Zigbee WiFi 蓝牙模块的优势 相对于单一的 Zigbee 模块、WiFi 模块和蓝牙模块,Zigbee WiFi 蓝牙模块具有以下优势: 1. 相互兼容性:Zigbee WiFi 蓝牙模块可以实现 Zigbee、WiFi 和蓝牙三种无线通信技术之间的相互兼容和切换,满足不同设备之间的无线通信需求。 2. 节省成本和空间:Zigbee WiFi 蓝牙模块可以将功能模块集成在一起,将多个模块的成本和空间节省下来。 3. 提高效率:Zigbee WiFi 蓝牙模块可以提高无线通信的效率和稳定性,满足用户不同需求的无线通信,提高通信效率。 4. 便于开发和维护:Zigbee WiFi 蓝牙模块可以简化开发和维护的工作,提高工作效率和工作质量,降低维护和开发成本。 四、Zigbee WiFi 蓝牙模块的应用 Zigbee WiFi 蓝牙模块广泛应用于以下领域: 1. 物联网: Zigbee WiFi 蓝牙模块可用于各种物联网应用,例如健身监控、远程监控、疾病管理等。使用蓝牙和 WiFi 技术可以进行设备之间的远程监控和数据共享,使物联网应用更加智能和高效。 2. 智能家居: Zigbee WiFi 蓝牙模块可用于智能家居设备中,例如智能灯光、温控设备、智能家电等。使用 Zigbee 和 WiFi 技术可以实现设备之间的智能连接和控制,使智能家居更加便捷和高效。 3. 智能城市:Zigbee WiFi 蓝牙模块可用于城市管理、环境监测、公共交通等领域。使用 Zigbee 和 WiFi 技术可以实现城市内的设备和数据之间的智能连接,使城市管理更加智能化和高效。 4. 智能医疗: Zigbee WiFi 蓝牙模块可用于医疗设备和医疗管理等领域。使用 Zigbee 和 WiFi 技术可以实现医疗设备和数据之间的智能连接和控制,使医疗服务更加便捷和高效。 5. 工业自动化: Zigbee WiFi 蓝牙模块可用于工业自动化设备和系统等领域。使用 Zigbee 和 WiFi 技术可以实现工业设备之间的智能连接和控制,使工业生产更加智能和高效。 五、总结 本文对 Zigbee WiFi 蓝牙模块的简介、功能、优势和应用等方面做了详细的介绍。无论是物联网、智能家居、智能城市、智能医疗还是工业自动化, Zigbee WiFi 蓝牙模块作为一种可以实现多种无线通信技术切换和兼容的模块,都将具有广泛的应用前景和市场需求。
查看详情 查看详情
上一页
1
2
...
128

地址:深圳市宝安区西乡街道麻布社区宝安互联网产业基地A区6栋7栋7706

邮箱:Sales@ferry-semi.com

版权所有©2020  深圳市飞睿科技有限公司  粤ICP备2020098907号    飞睿科技微波雷达wifi模块网站地图